返回首页 Disruptor 入门

剖析 Disruptor: 为什么会这么快

Disruptor 如何工作和使用

Disruptor 的应用

伪共享(False Sharing)

原文地址:http://ifeve.com/false-sharing/

作者:Martin Thompson 译者:丁一

缓存系统中是以缓存行(cache line)为单位存储的。缓存行是 2 的整数幂个连续字节,一般为 32-256 个字节。最常见的缓存行大小是 64个字节。

当多线程修改互相独立的变量时,如果这些变量共享同一个缓存行,就会无意中影响彼此的性能,这就是伪共享。缓存行上的写竞争是运行在 SMP 系统中并行线程实现可伸缩性最重要的限制因素。有人将伪共享描述成无声的性能杀手,因为从代码中很难看清楚是否会出现伪共享。

为了让可伸缩性与线程数呈线性关系,就必须确保不会有两个线程往同一个变量或缓存行中写。两个线程写同一个变量可以在代码中发现。为了确定互相独立的变量是否共享了同一个缓存行,就需要了解内存布局,或找个工具告诉我们。Intel VTune 就是这样一个分析工具。本文中我将解释 Java 对象的内存布局以及我们该如何填充缓存行以避免伪共享。

图 1.

图1说明了伪共享的问题。在核心 1 上运行的线程想更新变量 X,同时核心 2 上的线程想要更新变量 Y。不幸的是,这两个变量在同一个缓存行中。每个线程都要去竞争缓存行的所有权来更新变量。如果核心 1 获得了所有权,缓存子系统将会使核心 2 中对应的缓存行失效。当核心 2 获得了所有权然后执行更新操作,核心 1 就要使自己对应的缓存行失效。这会来来回回的经过 L3 缓存,大大影响了性能。如果互相竞争的核心位于不同的插槽,就要额外横跨插槽连接,问题可能更加严重。

Java 内存布局(Java Memory Layout)

对于 HotSpot JVM,所有对象都有两个字长的对象头。第一个字是由 24 位哈希码和 8 位标志位(如锁的状态或作为锁对象)组成的 Mark Word。第二个字是对象所属类的引用。如果是数组对象还需要一个额外的字来存储数组的长度。每个对象的起始地址都对齐于 8 字节以提高性能。因此当封装对象的时候为了高效率,对象字段声明的顺序会被重排序成下列基于字节大小的顺序:

  1. doubles (8) 和 longs (8)
  2. ints (4) 和 floats (4)
  3. shorts (2) 和 chars (2)
  4. booleans (1) 和 bytes (1)
  5. references (4/8)
  6. <子类字段重复上述顺序> (译注:更多 HotSpot 虚拟机对象结构相关内容:http://www.infoq.com/cn/articles/jvm-hotspot

了解这些之后就可以在任意字段间用 7 个long来填充缓存行。在 Disruptor 里我们对 RingBuffer 的 cursor 和 BatchEventProcessor 的序列进行了缓存行填充。

为了展示其性能影响,我们启动几个线程,每个都更新它自己独立的计数器。计数器是 volatile long 类型的,所以其它线程能看到它们的进展。

public final class FalseSharing
    implements Runnable
{
    public final static int NUM_THREADS = 4; // change
    public final static long ITERATIONS = 500L * 1000L * 1000L;
    private final int arrayIndex;

    private static VolatileLong[] longs = new VolatileLong[NUM_THREADS];
    static
    {
        for (int i = 0; i < longs.length; i++)
        {
            longs[i] = new VolatileLong();
        }
    }

    public FalseSharing(final int arrayIndex)
    {
        this.arrayIndex = arrayIndex;
    }

    public static void main(final String[] args) throws Exception
    {
        final long start = System.nanoTime();
        runTest();
        System.out.println("duration = " + (System.nanoTime() - start));
    }

    private static void runTest() throws InterruptedException
    {
        Thread[] threads = new Thread[NUM_THREADS];

        for (int i = 0; i < threads.length; i++)
        {
            threads[i] = new Thread(new FalseSharing(i));
        }

        for (Thread t : threads)
        {
            t.start();
        }

        for (Thread t : threads)
        {
            t.join();
        }
    }

    public void run()
    {
        long i = ITERATIONS + 1;
        while (0 != --i)
        {
            longs[arrayIndex].value = i;
        }
    }

    public final static class VolatileLong
    {
        public volatile long value = 0L;
        public long p1, p2, p3, p4, p5, p6; // comment out
    }
}

结果(Results)

运行上面的代码,增加线程数以及添加/移除缓存行的填充,下面的图 2 描述了我得到的结果。这是在我 4 核 Nehalem 上测得的运行时间。

图 2

从不断上升的测试所需时间中能够明显看出伪共享的影响。没有缓存行竞争时,我们几近达到了随着线程数的线性扩展。

这并不是个完美的测试,因为我们不能确定这些 VolatileLong 会布局在内存的什么位置。它们是独立的对象。但是经验告诉我们同一时间分配的对象趋向集中于一块。

所以你也看到了,伪共享可能是无声的性能杀手。

注意:更多伪共享相关的内容,请阅读我后续 blog。

原创文章,转载请注明: 转载自并发编程网 – ifeve.com

本文链接地址: 伪共享(False Sharing)