Spark 的 API 很大程度上依靠在驱动程序里传递函数到集群上运行。这里有两种推荐的方式:
object MyFunctions
然后传递 MyFounctions.func1
,像下面这样:object MyFunctions {
def func1(s: String): String = { ... }
}
myRdd.map(MyFunctions.func1)
注意,它可能传递的是一个类实例里的一个方法引用(而不是一个单例对象),这里必须传送包含方法的整个对象。例如:
class MyClass {
def func1(s: String): String = { ... }
def doStuff(rdd: RDD[String]): RDD[String] = { rdd.map(func1) }
}
这里,如果我们创建了一个 new MyClass
对象,并且调用它的 doStuff
,map
里面引用了这个 MyClass
实例中的 func1
方法,所以这个对象必须传送到集群上。类似写成 rdd.map(x => this.func1(x))
。
以类似的方式,访问外部对象的字段将会引用整个对象:
class MyClass {
val field = "Hello"
def doStuff(rdd: RDD[String]): RDD[String] = { rdd.map(x => field + x) }
}
相当于写成 rdd.map(x => this.field + x)
,引用了整个 this
对象。为了避免这个问题,最简单的方式是复制 field
到一个本地变量而不是从外部访问它:
def doStuff(rdd: RDD[String]): RDD[String] = {
val field_ = this.field
rdd.map(x => field_ + x)
}