返回首页 一步一步写算法

八皇后

八皇后是一道很具典型性的题目。它的基本要求是这样的:在一个8*8的矩阵上面放置8个物体,一个矩阵点只允许放置一个物体,任意两个点不能在一行上,也不能在一列上,不能在一条左斜线上,当然也不能在一条右斜线上。

初看到这道题目,大家的第一印象是遍历,但是经过实践之后发现遍历其实不好写,而且复杂度很低。不仅需要遍历888888888 = 2^24次数据,还要判断各种条件,实际的计算复杂度还要比较这个高。其实我们仔细看一看,这中间很多的计算其实很多是不需要的,因为如果我们在某一行没有可以插入的数据的话,那么这后面的行其实就不用考虑了。也就是说,我们只有在保证前面 插入的物体都合法有效的情况下,才能进行下一次的物体插入。无谓的遍历只会是无用功。

那么,我们应该怎么做呢?其实步骤不太难:

(1)在第n行寻找可以插入的位置,中间涉及到位置合法性的判断

(2)如果没有可以插入的位置,返回

(3)如果有可以插入的位置, 插入数据。此时再判断是否已经是最后一行,如果是,打印输出返回;反之继续对下一行数据进行试探处理。

有了上面的步骤,我们就可以书写代码了。老规矩,朋友们可以自己先尝试一下。

a)定义全局堆栈和打印函数

static int gEightQueen[8] = {0};
static int gCount = 0;

void print()
{
    int outer;
    int inner;

    for(outer = 0; outer <8; outer ++){
        for(inner = 0; inner < gEightQueen[outer]; inner ++)
            printf("* ");

        printf("# ");

        for(inner = gEightQueen[outer] + 1; inner < 8; inner ++)
            printf("* ");

        printf("n");
    }

    printf("=====================================n");
}

b)添加位置合法性的函数判断

int check_pos_valid(int loop, int value)
{
    int index;
    int data;

    for(index = 0; index < loop; index ++){
        data = gEightQueen[index];

        if(value == data)
            return 0;

        if((index + data) == (loop + value))
            return 0;

        if((index - data) == (loop - value))
            return 0;
    }

    return 1;
}

c) 八皇后遍历

void eight_queen(int index)
{
    int loop;

    for(loop = 0; loop < 8; loop++){
        if(check_pos_valid(index, loop)){
            gEightQueen[index] = loop;

            if(7 == index){
                gCount ++, print();
                gEightQueen[index] = 0;
                return;
            }

            eight_queen(index + 1);
            gEightQueen[index] = 0;
        }
    }
}

总结:

(1)迭代递归是编程的难点,需要自己好好实践,看别人写一百遍,不如自己写一遍

(2)递归的时候务必注意函数return的出口

(3)递归函数中语句的顺序不要随意更换

(4)递归函数中注意数据的保存和恢复

(5)递归函数也要验证,可以用程序验证法,也可以用其他函数的结果来验证

ps:

下面是完整的代码,大家可以直接保存成queue.cpp,直接编译运行即可。可以打印出所有92种情况,

#include 
using namespace std;

static int gEightQueen[8] = {0};
static int gCount = 0;

void print()
{
    int outer;
    int inner;

    for(outer = 0; outer <8; outer ++){
        for(inner = 0; inner < gEightQueen[outer]; inner ++)
            printf("* ");

        printf("# ");

        for(inner = gEightQueen[outer] + 1; inner < 8; inner ++)
            printf("* ");

        printf("n");
    }

    printf("=====================================n");
}

int check_pos_valid(int loop, int value)
{
    int index;
    int data;

    for(index = 0; index < loop; index ++){
        data = gEightQueen[index];

        if(value == data)
            return 0;

        if((index + data) == (loop + value))
            return 0;

        if((index - data) == (loop - value))
            return 0;
    }

    return 1;
}

void eight_queen(int index)
{
    int loop;

    for(loop = 0; loop < 8; loop++){
        if(check_pos_valid(index, loop)){
            gEightQueen[index] = loop;

            if(7 == index){
                gCount ++, print();
                gEightQueen[index] = 0;
                return;
            }

            eight_queen(index + 1);
            gEightQueen[index] = 0;
        }
    }
}

int main(int argc, char* argv[])
{
    eight_queen(0);
    printf("total = %dn", gCount);
    return 1;
}
上一篇: 数据选择 下一篇: 挑选最大的n个数