

Sébastien Goasguen

60 Recipes for Apache CloudStack

60 Recipes for Apache CloudStack
by Sébastien Goasguen

Copyright © 2014 Sébastien Goasguen. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Matthew Hacker
Copyeditor: Jasmine Kwityn
Proofreader: Linley Dolby

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

September 2014: First Edition

Revision History for the First Edition:

2014-08-22: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491910139 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. 60 Recipes for Apache CloudStack, the image of a Virginia Northern flying squirrel, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-491-91013-9

[LSI]

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491910139

Table of Contents

Preface. vii

Part I. Installation

1. Installing from Source. 3
1.1. Installing the Prerequisites for Ubuntu 14.04 3
1.2. Installing the Prerequisites for CentOS 6.5 4
1.3. Installing from Source 6
1.4. Using the CloudStack Simulator 7
1.5. Using the CloudStack Sandbox: DevCloud 9
1.6. Vagrant-Based CloudStack Testing Deployment 11
1.7. Building CloudStack Binary Packages 13

2. Installing from Packages. 15
2.1. Installing the Prerequisites on the Management Server 17
2.2. Setting Up the Management Server 19
2.3. Setting Up an Image Catalog and Seeding it with the SystemVM Template 21
2.4. Preparing a KVM Hypervisor 22
2.5. Configuring libvirt 24
2.6. Basic Zone Network Configuration and NAT Router Setup 25
2.7. Configuring a Basic Zone 27
2.8. Troubleshooting Your First CloudStack Deployment 30

Part II. Clients and API Wrappers

3. API Clients. 35
3.1. The CloudStack API 35
3.2. Signing an API Request 36

iii

3.3. Installing CloudMonkey, the CloudStack Interactive Shell 39
3.4. Configuring CloudMonkey 40
3.5. Using CloudMonkey as an Interactive Shell 42
3.6. Starting a Virtual Machine Instance with CloudMonkey 43
3.7. Using Apache Libcloud with CloudStack 45
3.8. Managing Key Pairs and Security Groups Using Libcloud 48
3.9. Hybrid Cloud Applications Using Libcloud 49
3.10. IPython Interactive Shell with Libcloud 50
3.11. Installing and Configuring jclouds CLI 51
3.12. Using jclouds CLI with CloudStack 53
3.13. Using CloStack: A Clojure Client for CloudStack 55
3.14. Starting a Virtual Machine with CloStack 58
3.15. Use CloStack Within Your Own Clojure project 60
3.16. StackerBee, a Ruby Client for CloudStack 62

4. API Interfaces. 65
4.1. Installing and Configuring EC2Stack 65
4.2. Using the AWS CLI with EC2Stack 66
4.3. Improving the EC2Stack API Coverage 68
4.4. Using Python Boto with EC2Stack 69
4.5. Installing Eutester to Test the AWS Compatibility of Your CloudStack
Cloud 71
4.6. Using Eutester with EC2Stack to Write Functional tests 72
4.7. Installing and Configuring gstack: The CloudStack GCE Interface 74
4.8. Using gstack with the gcutil Tool 75
4.9. Supporting the OCCI Standard in CloudStack 80

Part III. Configuration Management and Advanced Recipes

5. Configuration Management. 85
5.1. Installing Veewee 86
5.2. Using Veewee to Create a Vagrant Base Box 86
5.3. Introducing Packer to Build Cloud Images 88
5.4. Installing Vagrant to Build and Test Cloud Images 90
5.5. Using the Vagrant CloudStack Plug-In 92
5.6. Introducing Ansible to Configure Cloud Instances 95
5.7. Provisioning with Ansible Playbooks 96
5.8. Ansible Provisioning with Vagrant CloudStack Plug-In 99
5.9. Installing knife-cloudstack 101
5.10. Starting an Instance with Knife 104
5.11. Bootstrapping Instances with Hosted Chef 105

iv | Table of Contents

6. Advanced Recipes. 109
6.1. Installing Fluentd to Collect CloudStack Logs and Events 109
6.2. Configuring the CloudStack Fluentd Plug-In 110
6.3. Using MongoDB as a Fluent Data Store 112
6.4. Playing with Basho Riak CS Object Store 114
6.5. Installing RiakCS on Ubuntu 12.04 116
6.6. Using Python Boto to Store Data in RiakCS 118
6.7. Using RiakCS as Secondary Storage for CloudStack 119
6.8. Installing Apache Whirr 122
6.9. Using Apache Whirr to Deploy a Hadoop Cluster 123

Part IV. Summary

7. Summary. 129
What We Covered 129
Other Areas to Explore 130
Final Words 131

Index. 133

Table of Contents | v

Preface

If you are a CloudStack user, you should read this book! If you are a CloudStack devel‐
oper, you should read this book! If you are a DevOps-minded person, you should read
this book! If you are an application developer, you should read this book! This might
sound like a joke, but this is really the intent. This book covers the Apache CloudStack
ecosystem, but it also introduces tools that are used in different setups. For example,
we’ll take a look at tools such as Chef, Ansible, and Vagrant, as well as applications (e.g.,
Hadoop) and storage solutions (e.g., RiakCS). This is much more than just CloudStack.

This is not a standard cookbook with multiple recipes on a single topic. It covers a variety
of tools and provides introductory material for each. It is meant to be used as a reference
that you can open at any time for a quick tutorial on how to use a specific tool or
application so that you can make effective use of it. Used in combination with
CloudStack, these tools are becoming core technologies used by developers, system
administrators, and architects alike. They build on the foundation of a solid cloud and
empower IT professionals to do things better and faster.

Why I Wrote This Book
I have been working with virtualization and what became known as clouds since around
2002. If we want to build a cloud, we now have several open source solutions, which
Marten Mickos, CEO of Eucalyptus, has called the four sisters: CloudStack, Eucalyp‐
tus, OpenNebula, and OpenStack. Successful private and public clouds are currently
operational all over the world using these solutions, so it appears that building a cloud
is now a solved problem. The capabilities of those clouds are certainly different and the
scalability of each solution—as well as some specific networking or storage features—
might be different, but they are operational and in production. This is why I believe that
instead of an installation book, it is important to look at the software ecosystem of those
cloud solutions and start thinking about using the cloud, integrating it in the
development and operational processes so that we can provide higher level services
using this foundation and start getting some return on investment.

vii

https://www.eucalyptus.com/
https://www.eucalyptus.com/
http://opennebula.org/
http://www.openstack.org/

Since I joined the Apache CloudStack community in July 2012, I have worked actively
to test and, when necessary, develop CloudStack drivers in a lot of tools that make the
arsenal of today’s IT developer and system administrators. Increasingly, I believe that
users can also leverage these tools directly. I wanted to write this book so that I could
share my experience with testing these tools and explain how they are relevant to answer
the question “I have a cloud, now what?” Then we can get back to focusing on the
problems at hand: reliable application hosting, distributed application deployments,
data processing, and so on.

The cloud has matured, and this book will show you various tools and techniques to
take full advantage of it so that you can stop worrying about the implementation details
of your cloud and get back to working on your applications.

CloudStack Within the Cloud Computing Picture in 500
Words
Cloud computing can be a very nebulous term—for some it is an online application,
for others it is a virtualization system. To set the record straight, the definition put forth
by the National Institute for Standards and Technology (NIST) is helpful. In its 2011
report, NIST defined cloud computing as follows:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort…

The NIST definition goes on to define the essential characteristics of clouds (i.e., on-
demand, network access, multitenancy, elasticity, and metering). It continues by defin‐
ing three service models: software as a service (SaaS), platform as a service (PaaS), and
infrastructure as a service (IaaS). It also identifies four deployment models: private
cloud, public cloud, hybrid cloud, and community cloud (note that community cloud
is a less recognized model and is not commonly used today).

The SaaS to IaaS model can be mapped to the old ISO model. SaaS deals with application
delivery, IaaS deals with infrastructure management, and PaaS is everything in between.
That’s a very simplified view of things, but it’s not too far off. SaaS refers to online
application hosting: users will access the application interface over the Internet, and all
the work that happens in the background to make the application available and scalable
is entirely hidden from the end user (as it should be). Gmail (and most Google services,
including Calendar and Docs) is a typical SaaS example. PaaS represents what we used
to call middleware, and makes the link between the end-user application and the
underlying infrastructure that it is running on. A PaaS solution is aimed at developers
who do not want to worry about the infrastructure. PaaS is a fast-moving area these
days with solutions such as Openshift, CloudFoundry, and Cloudify receiving a lot of
attention and being developed extremely fast. IaaS is the infrastructure layer that

viii | Preface

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.openshift.com
http://cloudfoundry.org
http://cloudifysource.org

orchestrates the work typically done by system administrators to host the applications,
including server provisioning, network management, and storage allocation.

Apache CloudStack is an infrastructure as a service (IaaS) software solution. It aims at
managing large sets of virtual machine instances in a highly available, highly scalable
way. It is used to build public or private clouds to offer on-demand, elastic, multitenant
compute, storage, and network services. As mentioned earlier, it is known as one of the
four sisters of open source cloud computing that allows you to build an Amazon EC2
clone.

CloudStack’s development was begun by a Silicon Valley startup called VMOps in 2008.
The company was renamed Cloud.com in 2010, and in 2011, Citrix Systems acquired
Cloud.com. In April 2012, Citrix donated CloudStack to the Apache Software Founda‐
tion (ASF). CloudStack then entered the Apache Incubator and became a trademark of
the ASF, graduating to become a top-level ASF project in March 2013, joining other
open source projects like HTTPD and Hadoop.

How This Book Is Organized
To get you up to speed on the Apache CloudStack ecosystem, the book is organized in
three parts with two chapters each. Part I discusses installation steps, both from source
and from binaries:

• Chapter 1, Installing from Source covers some basic installation steps for developers.
The CloudStack documentation provides complete installation instructions, so we
will not cover these details here. Instead, this chapter is meant to introduce Cloud‐
Stack and some features that can help ecosystem development (e.g., the simulator
and DevCloud, the CloudStack sandbox).

• Chapter 2, Installing from Packages is a step-by-step installation guide for Ubuntu
14.04 using KVM. This guide can be followed on a local machine using VMware
fusion (to do nested virtualization with KVM) or on physical hardware. It is in‐
tended for users who do not want to compile from source.

Part II discusses API clients and wrappers:

• Chapter 3, API Clients explains how to sign an API request and then goes through
a few clients, including CloudMonkey (the official CloudStack command-line
interface), Apache Libcloud (a Python module that abstracts the differences be‐
tween cloud providers’ APIs), Apache jclouds (a Java library with a similar goal as
libcloud), and CloStack (a Clojure-based client specific for CloudStack). This chap‐
ter should give everyone a taste of a client in their favorite language. This chapter
will be interesting to folks who want to use the CloudStack API and write their own
applications on top of it.

Preface | ix

http://bit.ly/CloudStack_origin
http://bit.ly/Cloud_acquisition
http://bit.ly/Cloud_acquisition
http://www.apache.org
http://www.apache.org
http://bit.ly/CloudStack_graduates
http://docs.cloudstack.apache.org

• Chapter 4, API Interfaces presents three applications that provide a different API
in front of the CloudStack API. They are sometimes called API bridges or wrappers.
These applications run as servers on the user’s machine or within the cloud provider
infrastructure, and expose a different API. For example, EC2Stack exposes an EC2-
compatible interface, gstack exposes a GCE-compatible interface, and rOCCI
exposes a standardized interface. In addition, this chapter presents Boto and Eu‐
tester, two Python modules written by the Eucalyptus team. Boto is a client to Am‐
azon Web Services (AWS) and Eutester is a testing framework. CloudStack users
will be able to use these modules in combination with EC2Stack.

Part III discusses configuration management and some advanced recipes:

• Chapter 5, Configuration Management starts with an introduction to Veewee and
Packer. Moving on from there, it presents several recipes about Vagrant, a software
development tool that helps test configurations locally and then deploys in the cloud
in a repeatable manner. With some knowledge of Vagrant, the rest of the chapter is
dedicated to the introduction of two configuration management solutions, Ansible
and Chef. These solutions have CloudStack plug-ins that help deploy applications
in the cloud. This chapter will be interesting to the DevOps community.

• Chapter 6, Advanced Recipes goes into some more advanced topics. We look at two
important aspects of the cloud infrastructure itself: monitoring and storage. We
introduce RiakCS and show how it can be used as an image catalog. We also show
how to use Fluent for log aggregation in combination with Elasticsearch and Mon‐
goDB. Finally, we introduce Apache Whirr, an application orchestrator built on top
of jclouds that can be used to deploy and run distributed systems like Hadoop.

Finally, Part IV summarizes the book and provides some tips for further reading and
investigation.

Technology You Need to Understand
This book is of an intermediate level and requires a minimum understanding of a few
development and system administration concepts. Before diving into the book, you
might want to review:
bash (Unix shell)

This is the default Unix shell on Linux and OS X. Familiarity with the Unix shell,
such as editing files, setting file permissions, moving files around the filesystems,
user privileges, and some basic shell programming will be very beneficial. If you
don’t know the Linux shell in general, consult books such as Cameron Newham’s
Learning the Bash Shell or Carl Albing, JP Vossen, and Cameron Newham’s bash
Cookbook, both from O’Reilly.

x | Preface

http://vagrantup.com
http://shop.oreilly.com/product/9780596009656.do
http://shop.oreilly.com/product/9780596526788.do
http://shop.oreilly.com/product/9780596526788.do

Package management
The tools we will present in this book often have multiple dependencies that need
to be met by installing some packages. Knowledge of the package management on
your machine is therefore required. It could be apt on Ubuntu/Debian systems,
yum on CentOS/RHEL systems, port or brew on OS X. Whatever it is, make sure
that you know how to install, upgrade, and remove packages.

Git
Git has established itself as the standard for distributed version control. If you are
already familiar with CVS and SVN, but have not yet used Git, you should. Version
Control with Git by Jon Loeliger and Matthew McCullough (O’Reilly) is a good
start. Together with Git, the GitHub website is a great resource to get started with
a hosted repository of your own. To learn GitHub, try http://training.github.com
and the associated interactive tutorial.

Python
In addition to programming with C/C++ or Java, I always encourage students to
pick up a scripting language of their choice. Perl used to rule the world, while these
days, Ruby and Go seem to be prevalent. I personally use Python. Most examples
in this book use Python but there are a few examples with Ruby, one even uses
Clojure. O’Reilly offers an extensive collection of books on Python, including In‐
troducing Python by Bill Lubanovic, Programming Python by Mark Lutz, and Python
Cookbook by David Beazley and Brian K. Jones.

Those are your weapons: your shell, your package manager, your GitHub account, and
some Python. If you don’t know these tools (and especially Python), you need not worry.
There are recipes for Rubyists and Clojure programmers. You will be able to pick things
up as you go along.

Online Content
If you want to take a self-paced training on a few of the tools described in this book,
head over to http://codac.co, an online tutorial I have presented several times. It makes
use of exoscale, a CloudStack-based public cloud. You can register for free on exoscale
and you will get free credits that should allow you to go through the tutorial.

Although a lot of the content in this book has been tested on exoscale, there are other
public CloudStack clouds that you can use to test these tools and even go to production.
You might consider getting an account with any or all of these:

• exoscale
• iKoula
• British Telecom Cloud

Preface | xi

http://shop.oreilly.com/product/0636920022862.do
http://shop.oreilly.com/product/0636920022862.do
http://github.com
http://training.github.com
http://try.github.io
http://shop.oreilly.com/product/0636920028659.do
http://shop.oreilly.com/product/0636920028659.do
http://shop.oreilly.com/product/9780596158118.do
http://shop.oreilly.com/product/0636920027072.do
http://shop.oreilly.com/product/0636920027072.do
http://codac.co
http://exoscale.ch
http://exoscale.ch
http://express.ikoula.com/cloud-public
https://www.btcloud.bt.com

• GreenQloud
• Leaseweb
• Cloud-n VERIO
• PCExtreme
• Kuomo
• Interoute Virtual Data Center (VDC)

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

xii | Preface

https://www.greenqloud.com
http://www.leaseweb.com/en/cloud
http://www.verio.com/cloud-computing/
https://www.pcextreme.nl/en/aurora/
http://www.kumo.com.co
http://bit.ly/Interoute_VDC

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu‐
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://shop.oreilly.com/product/
0636920034377.do.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xiii

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://shop.oreilly.com/product/0636920034377.do
http://shop.oreilly.com/product/0636920034377.do
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
Perhaps very strangely, I would like to thank the entire Amazon Web Services team for
doing an amazing job providing cloud services that are revolutionizing the IT landscape.
Amazon was the first to deliver on the vision of computing as a utility, and it has been
a huge driver and innovator in the way we interact with compute resources. I would
also like to thank the entire Apache Software Foundation CloudStack community, who
works extremely hard to develop and release CloudStack—without a healthy commu‐
nity, there is no ecosystem (and vice versa). A huge thank you goes to Mike Tutkowski,
Jeff Moody, and Pierre-Yves Ritschard, who took the time to review the book and gave
me some very valuable feedback. Finally, I would like to thank Mark Hinkle, who gave
me the time to write this book, and Brian Anderson, who took calls from me and brain‐
stormed with me as we tried to figure out the best format for this book.

xiv | Preface

PART I

Installation

This book is not about installing and configuring CloudStack (the official CloudStack
documentation already does a good job of that), but I feel that it is a prerequisite of this
book to cover some basics about the installation process. You can certainly use this book
by testing the clients and tools against a CloudStack-based public cloud and not worry
about the installation. But you might also be interested in testing all of them locally,
using your own deployment. In this part, we present several recipes that go through the
basic source installation on both Ubuntu 14.04 and CentOS 6.5, and highlight a few
interesting setups for developers—namely, the CloudStack simulator and DevCloud
(the CloudStack sandbox). You will see that compiling CloudStack is quite easy: you
can have a working development environment in a matter of hours. We also present a
complete installation from packages for a CloudStack basic zone using the KVM hy‐
pervisor. This installation will help first-time users who do not want to use the source
releases.

http://docs.cloudstack.apache.org
http://docs.cloudstack.apache.org

CHAPTER 1

Installing from Source

These recipes are aimed at CloudStack developers who need to build the code. These
instructions are valid on Ubuntu 14.04 and CentOS 6.5 systems, and were tested with
the 4.4 branch of Apache CloudStack; you might need to adapt them if you are on a
different operating system or using a newer/older version of CloudStack. In these rec‐
ipes, we cover the following items:

• Installing the prerequisites
• Compiling and installing from source
• Using the CloudStack simulator
• Testing with the CloudStack sandbox: DevCloud
• Building your own packages

At the time of this writing, the 4.4 release is not out yet: therefore, the
source testing is done on the release branch 4.4 and the packages used
are the 4.3.0 packages.

1.1. Installing the Prerequisites for Ubuntu 14.04
Problem
Like any software, CloudStack has some dependencies. In this recipe, we look at instal‐
ling the dependencies you’ll need for Apache CloudStack development. You can use the
package installation snippets to set up a machine that will allow you to build CloudStack
on Ubuntu 14.04.

3

Solution
First, update your system. Install OpenJDK, which is our first choice, because we’re
using Linux. Install MySQL. Install Git to later clone the CloudStack source code. Install
Maven to later build CloudStack.

Discussion
The following package installation will get the prerequisites installed on Ubuntu/
Debian-based systems (this was tested on a Ubuntu 14.04 machine):

apt-get -y update
apt-get -y install openjdk-7-jdk
apt-get -y install mysql-server
apt-get install git
apt-get install maven

MySQL should be running, but you can check its status with:

service mysql status

This should have installed Maven 3.0.5 (you can check the version number with mvn
--version).

A little bit of Python can be used, as we will see with the simulator described in
Recipe 1.4. Therefore, install the Python package management tools:

apt-get install python-pip

1.2. Installing the Prerequisites for CentOS 6.5
Problem
Like any software, CloudStack has some dependencies. In this recipe, we look at instal‐
ling the dependencies you’ll need for Apache CloudStack development. You can use the
package installation snippets to set up a machine that will allow you to build CloudStack
and CentOS 6.5.

Solution
First, update your system. Install OpenJDK, which is our first choice, because we’re
using Linux. Next, install MySQL, if it’s not already present on the system. Install Git to
later clone the CloudStack source code. Finally, install mkisofs via the genisoimage
package.

4 | Chapter 1: Installing from Source

Discussion
The following package installation snippet will get most of the prerequisites installed
on a CentOS/RHEL-based system (this was tested on a CentOS 6.5 machine):

yum -y update
yum -y install java-1.7.0-openjdk
yum -y install java-1.7.0-openjdk-devel
yum -y install mysql-server
yum -y install git
yum -y install genisoimage

MySQL should be stopped. You can check its status with service mysqld status and
start it with service mysqld start.

Let’s now install Maven to build CloudStack. It is a bit more complex than on Ubuntu
14.04. Grab the 3.0.5 release from the Maven website:

wget http://mirror.cc.columbia.edu/pub/software/apache/maven/maven-3/ \
3.0.5/binaries/apache-maven-3.0.5-bin.tar.gz
tar xzf apache-maven-3.0.5-bin.tar.gz -C /usr/local
cd /usr/local
ln -s apache-maven-3.0.5 maven

You can set up Maven system-wide by creating a /etc/profile.d/maven.sh file with the
following content:

export M2_HOME=/usr/local/maven
export PATH=${M2_HOME}/bin:${PATH}

Run the following, and you will have Maven in your PATH (the preceding steps should
have installed Maven 3.0; you can check the version number with mvn --version):

source /etc/profile.d/maven.sh
mvn --version

A little bit of Python can be used (see Recipe 1.4), so install the Python Package Index
utility (pip):

yum -y install python-pip

CentOS 6.5 is using Python 2.6.6. To use the simulator and the
CloudStack Marvin package, we will need Python 2.7 or later. Set‐
ting up Python 2.7 is left out of this recipe.

1.2. Installing the Prerequisites for CentOS 6.5 | 5

http://maven.apache.org/download.cgi

1.3. Installing from Source
Problem
With prerequisites installed (see Recipe 1.1 or Recipe 1.2), you want to build CloudStack
from source and run the management server locally.

Solution
You clone the Git repository of CloudStack and use several Maven profiles to build from
source, set up the database, and run the management server with Jetty.

Discussion
If you have gone through the prerequisite steps on Ubuntu or CentOS, then the fol‐
lowing build steps should be identical on both systems. CloudStack uses Git for source
version control; if you’re not familiar with Git, the online GitHub tutorial is a good start.

The steps highlighted in this section are the minimal steps re‐
quired to get a successful build of Apache CloudStack. Setting up a
hypervisor, setting up storage, and running the CloudStack man‐
agement server in a nondebug and production mode will require
additional packages.

Once Git is set up on your machine, pull the source from the Apache repository with:

git clone -b 4.4 https://git-wip-us.apache.org/repos/asf/cloudstack.git

The Apache CloudStack repository is also mirrored on GitHub. You
might want to clone from there:

git clone -b 4.4 https://github.com/apache/cloudstack.git

Although I am an Apache committer, I admit that the Apache Git
repo tends to be a bit slow. You will clone faster by using the Git‐
Hub mirror.

Now that you have installed the prerequisites and cloned the source code, you are ready
to build the 4.4 release (which, at the time you are reading this, should be the latest stable
release). To compile CloudStack, go to the CloudStack source folder and use Maven
commands (if you want to skip running the unit tests, add -DskipTests to this
command):

cd cloudstack
mvn -Pdeveloper,systemvm clean install

6 | Chapter 1: Installing from Source

http://www.eclipse.org/jetty/
http://try.github.io
http://github.com

Next, create all the proper MySQL tables with:

mvn -Pdeveloper -pl developer -Ddeploydb

You can check what tables have been created by opening an interactive MySQL shell
and looking at the cloud database. Runing the Apache CloudStack management server
is only one command away. We’ll use Jetty for testing (note that if you installed tom
cat, it may be be running on port 8080, so you’ll need to stop it before you use Jetty):

mvn -pl :cloud-client-ui jetty:run

This will run in the foreground and you will see the logs in stdout. To access the dash‐
board, open your web browser to http://localhost:8080/client (replace localhost with the
IP of your management server if need be).

If you have iptables enabled, you may have to open the ports used
by CloudStack (i.e., ports 8080, 8250, and 9090). For testing, you
might want to disable the firewall with ufw disable on Ubuntu or
service iptables stop on CentOS, but don’t forget to turn it back
on if you open this machine to the public Internet.

You can now start exploring the dashboard and play with the API. Of course, we did
not set up any infrastructure and there is no storage, no hypervisors, and no network
defined. At this stage, you will not be able to start instances. However, you are a couple
steps away from using the simulator. The next recipe shows you how to use the simulator
so that you don’t have to set up a physical infrastructure, which will allow you to start
developing and playing with a virtual data center on your local machine.

1.4. Using the CloudStack Simulator
Problem
You want to run some functionality tests against the CloudStack management server,
but you do not want to (or cannot) deploy a complete CloudStack cloud on a physical
infrastructure.

Solution
Use the CloudStack simulator to set up a virtual data center. You build CloudStack with
the simulator profile and set up some specific database tables with another Maven pro‐
file. Then you install Marvin, a Python-based testing framework for CloudStack. Once
you start the management server again, you can use a Marvin script (deployDataCen‐
ter.py) to configure a simulated infrastructure.

1.4. Using the CloudStack Simulator | 7

http://bit.ly/Marvin_framework

Discussion
CloudStack comes with a simulator based on Python bindings called Marvin. Marvin
is available in the CloudStack source code or on PyPI. With Marvin, you can simulate
your data center infrastructure by providing CloudStack with a configuration file that
defines the number of zones/pods/clusters/hosts, types of storage, and so on. You can
then develop and test the CloudStack management server as if it were managing your
production infrastructure. To use the simulator, we need to alter some of our build steps
and use Marvin to configure the simulated data center.

First, do a clean build and add the simulator profile:

mvn -Pdeveloper -Dsimulator -DskipTests clean install

Then deploy the database and set up some simulator-specific tables and configurations
using the following:

mvn -Pdeveloper -pl developer -Ddeploydb
mvn -Pdeveloper -pl developer -Ddeploydb-simulator

As mentioned previously, the Marvin package used to configure the
data center requires Python 2.7 or later, so if you are using CentOS
6.5, you will need to install it. Because it can involve building Python
from source, we are not covering this step.

Next, install Marvin (note that you will need to have installed pip properly in the pre‐
requisites step; the python-dev package is needed to install the paramiko module, and
the --allow-external flag helps install the mysql-connector-python package):

sudo apt-get -y install python-dev
sudo pip install --allow-external mysql-connector-python mysql-connector-python
sudo pip install tools/marvin/dist/Marvin-0.1.0.tar.gz

Stop Jetty (from any previous runs) and start a new management server with a simulator
profile:

mvn -pl :cloud-client-ui jetty:stop
mvn -pl client jetty:run -Dsimulator

With the management server running in the foreground, open a separate shell to set up
a basic zone with Marvin:

python ./tools/marvin/marvin/deployDatacenter.py -i setup/dev/basic.cfg

At this stage, log in to the CloudStack management server at http://localhost:8080/
client with the credentials admin/password; you should see a fully configured basic zone
infrastructure. To simulate an advanced zone, replace basic.cfg with advanced.cfg. You
can now start a simulated instance and take snapshots of it, in addition to running most

8 | Chapter 1: Installing from Source

operations that a production system would allow you to do. Using the simulator is a
good way to test new features, test API clients, and run integration tests.

1.5. Using the CloudStack Sandbox: DevCloud
Problem
The simulator is not enough for your testing or demonstrations. You want to take ad‐
vantage of nested virtualization to run a Xen-based hypervisor locally, and use Cloud‐
Stack to start virtual machines within this local hypervisor.

Solution
Use DevCloud, a VirtualBox image, to run a Xen hypervisor on your local machine.
Using Maven, you set up the database for the special DevCloud use case, and run Marvin
to configure CloudStack with DevCloud. You will have a cloud with one zone, one pod,
one cluster, and one host: DevCloud.

Discussion
Installing from source (see Recipe 1.3) will get you to the point of running the man‐
agement server, but it does not get you any hypervisors. The simulator (see Recipe 1.4)
gets you a simulated data center for testing. With DevCloud, you can run at least one
hypervisor and add it to your management server the way you would a real physical
machine.

DevCloud is the CloudStack sandbox. The standard version is a VirtualBox-based im‐
age, though there is also a KVM-based image for it. Here we only show steps with the
VirtualBox image. For KVM, there are good instructions on the CloudStack wiki.

With DevCloud, you will run the management server on your local machine and Xen
hypervisors in the DevCloud VirtualBox image. DevCloud and localhost will be con‐
nected via a host-only interface available through the VirtualBox. DevCloud also has a
NAT interface to get access to the public Internet.

You could also run the management server within DevCloud itself,
avoiding the need to set up your local environment to compile Cloud‐
Stack from source.

DevCloud prerequisites
To get started, we need to install a few prerequisites:

1.5. Using the CloudStack Sandbox: DevCloud | 9

http://bit.ly/_DevCloud
http://bit.ly/DevCloud-KVM

1. Install VirtualBox on your machine.
2. Run VirtualBox and, under Preferences, create a host-only interface on which you

disable the DHCP server.
3. Download the DevCloud image.
4. In VirtualBox, under File → Import Appliance, import the DevCloud image.
5. Verify the settings under Settings, and check the “enable PAE” option in the pro‐

cessor menu.
6. Once the VM has booted, try to SSH to it with credentials: root/password and ssh

root@192.168.56.10.

If successful, you can move to the machine running the management server and con‐
figure a basic zone that will have one zone, one pod, one cluster, and one hypervisor:
DevCloud.

Adding DevCloud as a hypervisor
To get the management server running, we do a clean build, but when we set up the
database, we use some DevCloud-specific Maven profiles that are going to fill up some
tables with values that match this particular setup:

mvn -Pdeveloper,systemvm clean install
mvn -Pdeveloper -pl developer,tools/devcloud -Ddeploydb

At this stage, install Marvin like you did in Recipe 1.4:

pip install tools/marvin/dist/Marvin-0.1.0.tar.gz

Start the management server with Jetty:

mvn -pl client jetty:run

You will have a running CloudStack management server but an empty infrastructure.
You are going to configure CloudStack, defining a data center with a single hypervisor.
To do this, we use a Python script in the Marvin directory called deployDataCenter.py.
This script takes a JSON file as input and makes the required CloudStack API calls to
create the zone, pod, cluster, host, and storage components of this single hypervisor data
center. Here’s how to do it:

cd tools/devcloud
python ../marvin/marvin/deployDataCenter.py -i devcloud.cfg

If you are curious, check the devcloud.cfg file and see how the data center is defined in
a JSON format.

You can now log in to the management server at http://localhost:8080/client and start
experimenting with the UI. If the configuration went well, you should see the infra‐
structure defined in the Infrastructure tab in the dashboard. With the zone enabled and

10 | Chapter 1: Installing from Source

http://www.virtualbox.org
http://bit.ly/DevCloud_image

all components set up, you can head to the Instances tab and start an instance. The
default template is a ttylinux template that you will be able to SSH into.

The management server is running in your local machine, and Dev‐
Cloud is used only as a hypervisor. You could potentially run the
management server within DevCloud as well, or memory granted,
run multiple DevClouds.

Using DevCloud is a good way to get started with CloudStack and start real instances.
You can use it to learn the API and learn the CloudStack networking setup.

As of this writing, DevCloud is broken for use with the yet to be
released CloudStack 4.4. DevCloud should be fixed when 4.4 is out.
There is an alternative solution being developed by a Google Sum‐
mer of Code 2014 project (see Recipe 1.6).

1.6. Vagrant-Based CloudStack Testing Deployment
Problem
You like DevCloud Recipe 1.5, but you would like to use a more configurable and man‐
ageable solution based on Vagrant (Recipe 5.4) and Chef (Recipe 5.9) to start a Cloud‐
Stack development environment.

Solution
Use a Vagrant-based project currently under development through the Google Summer
of Code (GSoC). It will use Vagrant boxes to act as a hypervisor and as an NFS and
MySQL server. You will run the CloudStack management server on your local machine
and it will connect to the remote database server. You will configure the data center
using Marvin, just like with DevCloud (Recipe 1.5).

Discussion
This recipe assumes that you have some knowledge of Vagrant. If not, go through
Recipe 5.4 first. The configuration of the NFS and MySQL server, as well as the NAT
routing, is done via Chef recipes. This GSoC project aims to provide complete Chef
recipes to install CloudStack.

1.6. Vagrant-Based CloudStack Testing Deployment | 11

http://vagrantup.com
http://getchef.com

For this recipe, you will need VirtualBox installed on your machine.
You will also need to set up VirtualBox with a host-only interface
that has the DHCP server disabled.

To try this work in progress, clone what is currently called GSoC-2014 and use Vagrant
to start the boxes. The project makes use of Git submodules and you will need the
--recursive option when cloning to get the code from these subprojects:

git clone --recursive https://github.com/imduffy15/GSoC-2014.git
cd GSoC-2014
cd MySql_NFS_XenServer
vagrant up

This will start a management machine based on CentOS 6.5 and using Chef (Recipe 5.9).
A xenserver machine will also be brought up to act as a hypervisor. Go back to the
cloudstack directory, build and run the CloudStack management server on your local
machine and use Marvin to configure the data center programmatically (if you need
help with any of these steps, refer back to Recipe 1.3):

wget http://download.cloud.com.s3.amazonaws.com/tools/vhd-util \
 -P scripts/vm/hypervisor/xenserver/
chmod +x scripts/vm/hypervisor/xenserver/vhd-util
mvn -P developer,systemvm clean install -DskipTests=true
mvn -P developer -pl developer,tools/devcloud -Ddeploydb
mvn -pl :cloud-client-ui jetty:run

With the management server running, you can access the dashboard at http://localhost:
8080/client. On another shell, install Marvin and deploy the devcloud configuration:

pip install tools/marvin/dist/Marvin-0.1.0.tar.gz
python tools/marvin/marvin/deployDataCenter.py -i ../devcloud.cfg

To check on the status of the system VMs (Recipe 2.8), use vagrant ssh and once logged
in on the hypervisor, use the xe toolstack to check the running VMs:

cd ../MySql_NFS_XenServer
vagrant ssh xenserver
sudo su
xe vm-list

Once the system VMs are up and running, the ttylinux template will get downloaded
and installed and you will be able to start an instance, do all the testing that you want,
and develop more CloudStack features. Enjoy!

12 | Chapter 1: Installing from Source

https://www.virtualbox.org
http://bit.ly/host-only

1.7. Building CloudStack Binary Packages
Problem
Instead of using the convenience binaries available through a community-maintained
repository, you want to build your own CloudStack packages from source.

Solution
Install a few more packages, which were not required for building from source. On
Ubuntu, use the dpkg-buildpackage command, and on CentOS/RHEL systems, use
the script package.sh located in the packaging/centos63/ directory.

Discussion
Working from source is necessary when developing CloudStack. As mentioned earlier,
this is not primarily intended for users. However, some may want to modify the code
for their own use and specific infrastructure. They may also need to build their own
packages for security reasons and due to network connectivity constraints. This recipe
shows you the gist of how to build packages. We assume that you will know how to
create a repository to serve these packages. The complete documentation is available
on the website.

To build Debian packages, you will need a couple extra packages that we did not need
to install as prerequisites for source compilation:

apt-get -y install python-mysqldb
apt-get -y install debhelper
apt-get -y install tomcat6

Then build the packages with:

dpkg-buildpackage -uc -us

One directory up from the CloudStack root dir, you will find:

cloudstack_4.4.0_amd64.changes
cloudstack_4.4.0.dsc
cloudstack_4.4.0.tar.gz
cloudstack-agent_4.4.0_all.deb
cloudstack-awsapi_4.4.0_all.deb
cloudstack-cli_4.4.0_all.deb
cloudstack-common_4.4.0_all.deb
cloudstack-docs_4.4.0_all.deb
cloudstack-management_4.4.0_all.deb
cloudstack-usage_4.4.0_all.deb

1.7. Building CloudStack Binary Packages | 13

http://bit.ly/create_repo
http://bit.ly/build_packages

Of course, the community provides a repository for these packages and you can use it
instead of building your own packages and putting them in your own repo. Instructions
on how to use this community repository are available in the installation guide.

On CentOS/RHEL systems, add the following packages:

yum -y install rpm-build
yum -y install tomcat6
yum -y install ws-commons-util
yum -y install gcc
yum -y install glibc-devel
yum -y install MySQL-python

You can then build the packages by running ./packaging/centos63/package.sh from the
cloudstack directory. The rpms will be located in ./dist/rpmbuild/RPMS/x86_64. Cloud‐
Stack features some plug-ins (e.g., networking, storage) that may use software with
licenses that may conflict with the Apache license or that may only be made available
as binaries. These plug-ins are not distributed by Apache but can be built by users with
the noredist flag (e.g., in CentOS, use package.sh -p noredist).

14 | Chapter 1: Installing from Source

http://bit.ly/community_repo

CHAPTER 2

Installing from Packages

Most users will not install CloudStack from source, so in this chapter, we’ll look at the
installation process using community-provided binaries. These instructions are valid
on an Ubuntu 14.04 server system; you might need to adapt them if you are on a different
operating system.

We are going to set up a CloudStack infrastructure consisting of two machines. One
will be running the CloudStack management server, a MySQL database, and an NFS
server. The other will be set up as a KVM hypervisor; it will mount the NFS share
exported by the management server and will have a Linux bridge set up for all the virtual
machines to attach to.

We will set up a basic networking zone (illustrated in Figure 2-1), which means that we
will use a shared layer 3 network. Isolation of tenants will be through security groups;
no VLANs or other layer 2 isolation method will be used. This will be very similar to
the DevCloud (Recipe 1.5) setup, but will use packages instead of a source build, and
KVM instead of a Xen hypervisor.

For complete installation instructions, see the official documentation; this is just a quick
start guide to get you off the ground. Although the recipes can be read independently
of one another, if you want to do a complete install of CloudStack, you will need to
review all of the recipes in this chapter.

The Apache Software Foundation does not release binaries, so keep
in mind that these hosted packages are made available by communi‐
ty members for the convenience of users but do not represent offi‐
cial releases of the Apache CloudStack project.

15

http://bit.ly/install_docs

Figure 2-1. Apache CloudStack basic zone

To do this installation, we will follow five basic steps:

1. Installing the management server prerequisites
2. Setting up the management server
3. Installing the KVM agent prerequisites
4. Setting up a KVM hypervisor
5. Configuring a basic zone

16 | Chapter 2: Installing from Packages

2.1. Installing the Prerequisites on the Management
Server
Problem
To set up the CloudStack management server on a pristine Ubuntu 14.04 server using
the CloudStack community package repository, you need to install a few prerequisites
and prepare your networking environment.

Solution
Use the bash command-line snippet shown in the Discussion to install the prerequisites
on Ubuntu 14.04. Edit the /etc/hosts and /etc/networking/interfaces files to set up your
network.

Discussion
Let’s look at the dependencies you’ll need for installing CloudStack. First, update your
system, install NTP to synchronize the clocks, and install openSSH server if you have
not done so already. Install a MySQL server. We will run the database and the manage‐
ment server on the same machine:

apt-get update
apt-get -y install openntpd
apt-get -y install openssh-server
apt-get -y install mysql-server
apt-get -y install libmysql-java

To simplify things in this test setup, make sure that you can SSH as the root user to this
server. Edit the /etc/ssh/ssh_config file and set PermitRootLogin to yes. In addition,
during the mysql-server installation, set a blank password. This is certainly not rec‐
ommended for production systems, but in this simple test it will move things forward
nicely.

The need for the libmysql-java package is a bug in the 4.3.0 re‐
lease. It is fixed in the upcoming 4.4 release and minor bug fix re‐
lease 4.3.1.

Networking in cloud infrastructure can be a bit tedious, so let’s try to get this right from
the start. In this test infrastructure, the management server and the KVM hypervisor
both have two network interfaces. One is on a public network (10.0.0.0/0) and the other
one on a private network (192.18.38.0/0). The management server has IP 192.168.38.100
on the private network and the KVM hypervisor has 192.168.38.101. You can set the

2.1. Installing the Prerequisites on the Management Server | 17

hostname of each server locally by editing /etc/hostsname and /etc/hosts. On the man‐
agement server, for example, you can set the following:

cat /etc/hostname
server

cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 server

192.168.38.100 server server.cloud
192.168.38.101 agent agent.cloud

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

This setup allows you to ping server and agent from each machine respectively.

In terms of network interfaces, make sure that they are set up properly. Of course, your
personal setup may vary. In this recipe, the eth0 interface gets an IP from a DHCP server
and provides the route to the public Internet. The eth1 interface is assigned an IP address
statically. This results in the following route and /etc/network/interfaces file:

cat /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet dhcp
 dns_nameservers 8.8.8.8 8.8.4.4
 post-up route add default gw 10.0.0.1

auto eth1
iface eth1 inet static
 address 192.168.38.100
 gateway 192.168.38.1
 netmask 255.255.255.0

root@server:/home/sebgoa# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 10.0.0.1 0.0.0.0 UG 0 0 0 eth0
10.0.0.0 * 255.255.255.0 U 0 0 0 eth0
192.168.38.0 * 255.255.255.0 U 0 0 0 eth1
root@server:/home/sebgoa#

18 | Chapter 2: Installing from Packages

Make sure that you can reach the public Internet and that you can ping your private
gateway. If you are jumping ahead and setting up the agent at the same time, make sure
you can ping the agent on its private address.

This is all you need to start on a solid foundation and run the management server.

2.2. Setting Up the Management Server
Problem
With the prerequisites met (see Recipe 2.1), you want to configure the CloudStack
community package repository and get the packages to run the management server.
Then you want to set up the database and start the management server.

Solution
Add the CloudStack repo to the list of repositories that your system can get packages
from and set up the database tables using the cloudstack-setup-databases script that
will be in your path. Set up the management server with cloudstack-setup-
management and launch the service with service cloudstack-management start.

Discussion
As mentioned, packages are being hosted in a community repo. To get the packages,
add the CloudStack repo to your list by editing /etc/apt/sources.list.d/cloudstack.list and
adding the following:

deb http://cloudstack.apt-get.eu/ubuntu precise 4.3

Replace 4.3 with the release number that you want. At the time of this writing, the 4.4
release is not out, so you should still use 4.3 until 4.4 comes out. Add the public keys to
the trusted keys and update your local apt cache:

wget -O - http://cloudstack.apt-get.eu/release.asc|apt-key add -
apt-get update

You will need to set up the same package repository on your KVM
hypervisor (see Recipe 2.4).

With the repository set up, you can now grab the management server packages:

apt-get install cloudstack-management

2.2. Setting Up the Management Server | 19

This will install several dependencies. Once this is complete, you are ready to set up the
database. CloudStack can make use of a database running on a separate node, but in
this quick start guide, we are setting up everything on the same machine. Go ahead and
configure the database with the following command:

cloudstack-setup-databases cloud:<dbpassword>@localhost \
--deploy-as=root:<password> \
-e <encryption_type> \
-m <management_server_key> \
-k <database_key> \
-i <management_server_ip>

If you deploy as root with no password (as was recommended earlier) and don’t use
encryption, the output of running this setup command should be something similar to
the following:

cloudstack-setup-databases cloud:cloud@localhost --deploy-as=root
Mysql user name:cloud [OK]
Mysql user password:****** [OK]
Mysql server ip:localhost [OK]
Mysql server port:3306 [OK]
Mysql root user name:root [OK]
Mysql root user password:****** [OK]
Checking Cloud database files ... [OK]
Checking local machine hostname ... [OK]
Checking SELinux setup ... [OK]
Detected local IP address as 185.19.28.99,
will use as cluster management server node IP[OK]
Preparing /etc/cloudstack/management/db.properties [OK]
Applying /usr/share/cloudstack-management/setup/create-database.sql [OK]
Applying /usr/share/cloudstack-management/setup/create-schema.sql [OK]
Applying /usr/share/cloudstack-management/setup/create-database-premium.sql[OK]
Applying /usr/share/cloudstack-management/setup/create-schema-premium.sql [OK]
Applying /usr/share/cloudstack-management/setup/server-setup.sql [OK]
Applying /usr/share/cloudstack-management/setup/templates.sql [OK]
Processing encryption ... [OK]
Finalizing setup ... [OK]

CloudStack has successfully initialized database, you can check your database
configuration in /etc/cloudstack/management/db.properties

You are now ready to finish the setup and start the management server. The following
command will set up iptables properly, provide sudoers access, and restart the man‐
agement server:

cloudstack-setup-management

You can check the status or restart the management server with the following:

service cloudstack-management <status|restart>

20 | Chapter 2: Installing from Packages

You should now be able to log in to the management server UI at http://localhost:
8080/client (replace localhost with the appropriate IP address if needed). The default
login is admin and the default password is password. Click on the “I have used Cloud‐
Stack before” icon and go straight to the main dashboard. At this stage, you have the
CloudStack management server running, but no hypervisors and no storage configured.

2.3. Setting Up an Image Catalog and Seeding it with the
SystemVM Template
Problem
You need to build an image catalog accessible by all the hypervisors in your cloud. You
also need to seed this image catalog with the template of the CloudStack system virtual
machines (SVM). These SVMs run in the cloud itself and are used by CloudStack to
orchestrate certain functionalities like snapshots, console proxy, and network services.

Solution
Set up an NFS server and export the NFS share to your hypervisor. Use a CloudStack
script installed during the management server setup to fetch the template of the SVM
and store it in the NFS share.

Discussion
CloudStack has two types of storage: primary and secondary. The primary storage is
defined at the cluster level and available on the hypervisors that make up a cluster. In
this installation, we will use local storage for primary storage. The secondary storage is
shared zone wide and hosts the image templates and snapshots. In this installation, we
will use a NFS server running on the same node that we used to run the management
server.

Install NFS packages:

apt-get install nfs-kernel-server portmap
mkdir -p /export/secondary
chown nobody:nogroup /export/secondary

The hypervisors in your infrastructure as well as the secondary storage VM will mount
this secondary storage. Edit /etc/exports in such a way that these nodes can mount the
share. For instance:

/export/secondary 192.168.38.0/24(rw,async,fsid=0,no_root_squash)

Then create the NFS table for your export and start the NFS server service:

exportfs -a
service nfs-kernel-server start

2.3. Setting Up an Image Catalog and Seeding it with the SystemVM Template | 21

We are not setting up any firewall rules at this time for the NFS server.

We now need to seed this secondary storage with SystemVM templates. SystemVMs are
small appliances that run on one of the hypervisors of your infrastructure and help
orchestrate the cloud. We have the secondary storage VM, which manages image place‐
ment and snapshots; the proxy VM, which handles VNC connections to the instances;
and the virtual router, which provides network services. To seed the secondary storage
with the system VM template on Ubuntu for a KVM hypervisor:

/usr/share/cloudstack-common/scripts/storage/secondary/cloud-install-sys-tmplt \
-m /export/secondary \
-u http://download.cloud.com/templates/4.3 \
/systemvm64template-2014-01-14-master-kvm.qcow2.bz2 \
-h kvm -s <optional-management-server-secret-key> -F \

In this setup, we don’t use a management server secret key, so you don’t need to specify
an -s option.

2.4. Preparing a KVM Hypervisor
Problem
You have the management server running, but you still need to set up a hypervisor.
CloudStack is hypervisor agnostic and therefore suppports VMware Esxi, Hyper-V,
XenServer, LXC, and KVM. To set up a KVM hypervisor with CloudStack, you need to
mount the secondary storage and install the CloudStack agent on it.

Solution
On a fresh Ubuntu 14.04 server, install the NFS client and mount the secondary storage
that you set up in Recipe 2.3. After having set up the CloudStack package repository
(Recipe 2.2), you install the KVM CloudStack agent and finally set the hostname and
local DNS names properly.

Discussion
In this recipe, we will set up an Ubuntu 14.04 KVM hypervisor. The Secondary storage
set up in Recipe 2.3 needs to be mounted on this node. Let’s start by making this mount.

First, install openntpd (a service for time synchronization) on this server as well as the
NFS client packages. Then mount the secondary storage NFS filesystem exported from
the management server:

22 | Chapter 2: Installing from Packages

apt-get install openntpd
apt-get install nfs-common portmap
mkdir -p /mnt/export/secondary
mount -t nfs 192.168.38.100:/export/secondary /mnt/export/secondary

Check that the mount is successful with the df -h or the mount command. Then create
a file in the mounted directory by running touch /mnt/export/secondary/foobar.
Verify that you can also edit the file from the management server.

To make sure that this mount is made after a reboot, edit /etc/fstab and add this line:

192.168.38.100:/export/secondary /mnt/export/secondary nfs auto 0 0

For primary storage, we will use local storage. This will be set up when
we configure the infrastructure. You will need to set the configura‐
tion variable systemvm.use.local.storage to True and restart the
management server.

Similar to what you did with the management server, set the hostname and the local
DNS names of the agent. Edit the /etc/hostname and /etc/hosts/ files to be:

cat /etc/hostname
agent

cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 agent

192.168.38.100 server server.cloud
192.168.38.101 agent agent.cloud

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Interaction between the management server and the KVM hypervisor happens through
an agent running on the hypervisor. This agent is written in Java and makes use of
libvirt-java bindings to manage instances started on the host. To install the agent,
add the CloudStack repository the same way that you did when installing the manage‐
ment server (see Recipe 2.2):

echo deb http://cloudstack.apt-get.eu/ubuntu precise 4.3 \
 > /etc/apt/sources.list.d/cloudstack.list
wget -O - http://cloudstack.apt-get.eu/release.asc|apt-key add -
apt-get update

You can then install the CloudStack KVM agent with:

apt-get -y install cloudstack-agent

2.4. Preparing a KVM Hypervisor | 23

But don’t start the agent yet; let’s configure libvirt first.

2.5. Configuring libvirt
Problem
The CloudStack agent for KVM uses the libvirt Java bindings. You need to configure
libvirt properly for the CloudStack KVM agent to work.

Solution
Edit /etc/libvirt/libvirt.conf and /etc/init/libvirt-bin.conf to set a few variables and es‐
tablish your security policies. If apparmor is running, disable the security policies for
libvirt; if it’s not running, then you are set.

Discussion
libvirt is a common API for most hypervisor technologies used to create virtual
machines within physical servers. You will see that libvirt is a dependency of the
CloudStack agent package on KVM hypervisor. Once the agent is installed, you need to
configure libvirt.

Edit /etc/libvirt/libvirt.conf to include:

listen_tls = 0
listen_tcp = 1
tcp_port = "16509"
auth_tcp = "none"
mdns_adv = 0

In addition, edit /etc/init/libvirt-bin.conf to modify the libvirt options like so:

env libvirtd_opts="-d -l"

Then restart libvirt:

service libvirt-bin restart

To check whether security policies are configured properly, check that apparmor is run‐
ning with dpkg --list 'apparmor'. If it’s not, then you have nothing to do. If it is, then
enter the following commands:

ln -s /etc/apparmor.d/usr.sbin.libvirtd /etc/apparmor.d/disable/
ln -s /etc/apparmor.d/usr.lib.libvirt.virt-aa-helper /etc/apparmor.d/disable/
apparmor_parser -R /etc/apparmor.d/usr.sbin.libvirtd
apparmor_parser -R /etc/apparmor.d/usr.lib.libvirt.virt-aa-helper

24 | Chapter 2: Installing from Packages

http://libvirt.org

2.6. Basic Zone Network Configuration and NAT Router
Setup
Problem
You have installed the CloudStack packages and set up your secondary storage. lib
virt is configured properly and you have set up the hostnames and local DNS names.
The missing step is to configure the network to give network connectivity to the virtual
machines that you will provision through CloudStack. In this setup, we assume a basic
zone where all virtual machines share the same layer 2 network. A CloudStack advanced
zone would isolate all users on different layer 2 networks using a network isolation
method (e.g., VLANs). In addition, we will carry all the management, guest, storage,
and public traffic through the same physical network. CloudStack could use multiple
physical networks to carry the traffic of each of these, but we are not doing it in this
recipe. Hence, the problem is to set up a virtual switch on the KVM hypervisor so that
virtual interfaces can be connected to this switch and traffic can be forwarded properly.
Specifically, we need to carry the public Internet traffic through the management server
public Internet address.

Solution
You need to configure the network so that the KVM agent has a Linux bridge (virtual
switch) set up, where the virtual machines will attach to. You also need to set up IP
forwarding on the management server to provide public Internet access from the private
network. Edit the /etc/network/interfaces on the KVM agent to add one Linux bridge.
Turn on IPv4 forwarding on the management server and configure a few iptables rules
to route traffic from the private network interface to the public network interface.

Discussion
Let’s start by setting up IPv4 forwarding on the management server:

sysctl net.ipv4.ip_forward
net.ipv4.ip_forward = 0
sysctl -w net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
sysctl net.ipv4.ip_forward
net.ipv4.ip_forward = 1

Edit /etc/sysctl.conf to set it up after reboot (uncomment the net.ipv4.ip_forward=1
line).

Set up iptables forwarding and save the rules:

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

2.6. Basic Zone Network Configuration and NAT Router Setup | 25

iptables -A FORWARD -i eth0 -o eth1 -m state \
 --state RELATED,ESTABLISHED -j ACCEPT
iptables-save > /etc/iptables.rules

We are now going to set up the network bridge on the KVM hypervisor. It is used to
give network connectivity to the instances that will run on this hypervisor. This con‐
figuration can change depending on the number of network interfaces you have or
whether you use VLANS or not. In our simple case, we only have one network interface
on the hypervisor and no VLANs.

We originally set up two network interfaces on the KVM hypervi‐
sor. This made it easy to get public Internet access when setting up
the machine. However, from a CloudStack standpoint, we will only
use the private network interface. Hence, CloudStack will only see one
physical network and only requires one Linux bridge on the hyper‐
visor. You could set things up with multiple physical networks: in this
situation, you would set up multiple bridges and use KVM traffic
labels to differentiate them within CloudStack.

You configure the bridge by editing the /etc/network/interfaces file like so:

cat /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet dhcp

The secondary network interface
auto eth1
iface eth1 inet manual

#Private bridge
auto cloudbr1
iface cloudbr1 inet static
 address 192.168.38.101
 dns_nameservers 8.8.8.8 8.8.4.4
 netmask 255.255.255.0
 gateway 192.168.38.100
 bridge_ports eth1
 bridge_fd 5
 bridge_stp off
 bridge_maxwait 1

26 | Chapter 2: Installing from Packages

Note that the gateway on cloudbr1 is set to be the server. Reboot the agent to take these
changes into account. After the reboot, check that the routes are set properly and that
you can ping the server and reach the public Internet:

route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default server 0.0.0.0 UG 0 0 0 cloudbr1
10.0.0.0 * 255.255.255.0 U 0 0 0 eth0
192.168.38.0 * 255.255.255.0 U 0 0 0 cloudbr1
192.168.122.0 * 255.255.255.0 U 0 0 0 virbr0

The final step is to start the CloudStack agent:

service cloudstack-agent start

2.7. Configuring a Basic Zone
Problem
You have set up your management server and KVM hypervisor, your image catalog is
ready to go, and your network is all set. Now is the time to configure your CloudStack
cloud through the management dashboard. We will be configuring a basic zone, which
means that we will be configuring the nodes, storage servers, IP addresses, etc. that
CloudStack will need to be aware of to orchestrate virtual machine provisioning in this
infrastructure.

Solution
Go through the dashboard, select the Infrastructure tab, click on the Zone icon and
select Add Zone. Then follow the wizard. Once the zone is enabled, and all components
are green and the system VMs are running, you are ready to start an instance.

Discussion
You have set up the management server (Recipe 2.2), created a secondary storage for
an image catalog (Recipe 2.3), set up a KVM hypervisor (Recipe 2.4), and configured
the network for a basic zone deployment (Recipe 2.6). You are now ready to go through
the dashboard and configure your cloud.

CloudStack, like AWS EC2, has the concept of availability zones. To get started, you will
create a zone and follow the dashboard wizard. This wizard will guide you through
creating a pod, a cluster, and a host, as well as defining your primary and secondary
storage. For more information on this terminology, check the online documentation.

Log in to the management server UI http://192.168.38.100:8080/client. Replace the IP
with the IP of your management server. Log in with the username admin and the

2.7. Configuring a Basic Zone | 27

http://docs.cloudstack.apache.org/en/master/concepts.html

password password. You can be adventurous and click where you want or keep on fol‐
lowing this recipe. Click the button that says “I have used CloudStack before, skip this
guide”; we are going to bypass the wizard. You will then see the admin view of the
dashboard. Click the Infrastructure tab on the left side. Click the View Zones icon and
find and follow the Add Zone icon on the top right. You will then follow a series of
windows where you have to enter information describing the zone.

Our zone is a basic zone with 8.8.8.8 as primary DNS and 8.8.4.4 as internal DNS. Our
hypervisor type is KVM, and we are using local storage (scroll drown to the bottom of
the wizard window).

The reserved IPs are IPs used by the system VMs. Allocate a slice of your private network
to this (e.g., 192.168.38.10 to 192.168.38.20) and specify the gateway and netmask
(192.168.38.100 and 255.255.255.0).

The guest network will be another slice of this private network (e.g., 192.168.38.150 to
192.168.38.200 with gateway 192.168.38.100 and netmask 255.255.255.0).

The host is the KVM hypervisor that we set up. Enter its IP: 192.168.38.101 and its root
password. Make sure that you can SSH as root to the host with that password.

Finally, add the secondary storage. In our case, it is the NFS server we set up on the
management server (i.e., 192.168.38.100 and with a path of /export/secondary).

Once you are done entering the information, launch the zone, and CloudStack will
configure everything. If everything goes well, all the steps should have turned green.
We are using local storage on the hypervisor, so we will need to go to the Global Setttings
tab and set that up. We saw a warning during the configuration phase to that effect. In
the search icon (top right), enter system; you should see the setting system.vm.use.lo
cal.storage. Set it to true and restart the management server service cloudstack-
management restart. At this stage, CloudStack will start by trying to run the system
VMs and you should see a dashboard similar to the one shown in Figure 2-2.

You may face your first troubleshooting issue (Recipe 2.8), especially if your hypervisor
does not have much RAM. You can define some overprovisioning factor to overcome
this issue. In Global Settings, look up the mem.overprovisioning.factor variable and
set it to something larger than 1. You can do the same thing with CPU overprovisioning
with the cpu.overprovisioning.factor. You will be prompted to restart the manage‐
ment server.

If all goes well, the systemVMs will start, and you should be able to start adding templates
and launch instances. On KVM, your templates will need to be qcow2 images with a
qcow2 file extension. You will also need to have this image on a web server that is reach‐
able by your management server. However, to test your configuration, you will see that
there is a default CentOS 5.5 template already present. When the secondary system VM

28 | Chapter 2: Installing from Packages

started, this template should have started to download; when it reaches Ready state, you
can use it.

Figure 2-2. Apache CloudStack dashboard

The last step is to define a compute offering that matches your cloud. By default, a
CloudStack installation will have two compute offerings: small and medium instance.
Both assume shared storage for primary storage. This means that they will not work
with our setup where we are using local storage. Hence, you need to create a new com‐
pute offering with local storage enabled. Click in the Service Offerings tab, and in the
“select offering” drop-down menu, select Compute Offerings. Then click the Add Com‐
pute Offering button, fill in the information in the form, and add it.

If you use the DefaultShareNetworkwithSecurityGroup network of‐
fering when creating your zone (which is the default), don’t forget to
add ingress rules to that default security group, otherwise, no in-
bound traffic will be allowed to your instances. To ping your instan‐
ces, allow ICMP Echo request (type=8, code=0).

2.7. Configuring a Basic Zone | 29

Once your systemVMs are up and you have a template (or ISO) available, you are ready
to launch an instance. Go to the Instances tab and walk through the dialog screens.

Congratulations! You just completed your first CloudStack installation from scratch.

There are configuration management recipes to ease this setup. Check
out these Chef recipes. There are also Ansible playbooks and Pup‐
pet manifests, even though these last ones need a bit of love.

2.8. Troubleshooting Your First CloudStack Deployment
Problem
You have created and launched a zone, and everything seems green, but your systemVMs
are not starting or your templates do not get downloaded.

Solution
If the systemVMs don’t start, make sure that there is enough RAM and CPU available
on your hypervisor. You can turn on overprovisioning if you cannot add RAM. If your
templates do not get downloaded but your secondary system VM is up, log in to it and
run the system VM check.

Discussion
Following the previous recipes should get you to a working setup. However, depending
on what type of hardware you used for your hypervisor, you may not have enough
capacity to start the virtual machines. By default, the console proxy VMs will use 1 GB
of RAM and the secondary storage VM will use 512 MB. There are several ways to deal
with this:

• Add another hypervisor (follow Recipe 2.4 and add the new hypervisor through
the dashboard).

• Set some overprovisioning factors under Global Settings to greater than 1.
• Change the RAM usage of the systemVMs in the database and restart the manage‐

ment server.

To set the overprovisioning factors, in Global Settings, look up the mem.overprovision
ing.factor variable and set it to something larger than 1. You can do the same thing
with CPU overprovisioning with the cpu.overprovisioning.factor. You will be
prompted to restart the management server.

30 | Chapter 2: Installing from Packages

https://github.com/cloudops/cookbook_co-cloudstack
http://shapeblue.com/cloudstack/deploying-cloudstack-with-ansible/
https://github.com/CloudStack-extras/puppet-cloudstack
https://github.com/CloudStack-extras/puppet-cloudstack

To change the RAM usage of the systemVMs, log in on the management server, launch
a MySQL shell, and update the service_offering table. Check the id of the secondary
storage and console proxy VMs:

mysql -u root
mysql> use cloud;
mysql> select * from service_offering;
mysql> update service_offering set ram_size=256 where id=9;

If your templates do not get downloaded or seem stuck, log in to the secondary storage
system VMs from the hypervisor that is running it using the link local address of the
VM (you get it from the dashboard). Then run the system check script:

ssh -i /root/.ssh/id_rsa.cloud -p 3922 root@169.254.x.x
/usr/local/cloud/systemvm/ssvm-check.sh

The ssvm-check.sh script will verify that it can reach various nodes in the network and
that the secondary storage is accessible. If the check fails, you will need to go through
your network setup again and make sure that your secondary storage is properly moun‐
ted on the hypervisor and on the secondary storage VM. There is additional detailed
information on the wiki.

These few things seem to be the biggest causes of heartache when installing CloudStack,
but these guidelines should help you overcome any issues!

2.8. Troubleshooting Your First CloudStack Deployment | 31

http://bit.ly/CloudStack_wiki

PART II

Clients and API Wrappers

Now that you have access to a working CloudStack setup, it is time to dive into using
the API that it provides. Clients are software that run on your machine to connect to
the cloud and provide easy-to-use programming methods to make API calls to the cloud
endpoint you are using. There are over 20 clients for CloudStack currently available on
GitHub. You should be able to find one in the programming language of your choice.

In this part, we introduce the method used to sign API requests and then present a few
clients (see Figure II-1) that are commonly used by CloudStack operators and users.
CloudMonkey and Apache Libcloud are Python modules, jclouds is in Java, CloStack
is for Clojure, and StackerBee is for Ruby. There are many more.

All functionalities of CloudStack are exposed via an API server. There are currently over
20 clients for this API on GitHub, in various languages. In this part, we introduce this
API and the signing mechanism. The recipes in Chapter 3 will introduce clients that
already contain a signing method. The signing process is only highlighted for com‐
pleteness; all clients implement it. The recipes in Chapter 4 will introduce API wrappers
that provide a mapping between the CloudStack API and the APIs defined by public
clouds or standard organizations.

The CloudStack API is a query-based API using HTTP, which returns results in XML
or JSON. It is not a REST API in the strict definition, because it only uses HTTP verbs
GET and POST. DELETE, PATCH, and UPDATE, for example, are not used. The format
of the request also does not use a nice URI design like in the Google Compute Engine
API. It is a query-based API similar to the EC2 query API.

http://bit.ly/GitHub_clients
http://bit.ly/GCE_API
http://bit.ly/GCE_API
http://bit.ly/query_API

Figure II-1. Apache CloudStack clients

While clients are by definition client-side software, there is another way to abstract the
CloudStack API—for example, by offering API servers that provide the well-known
Amazon web services API, or the Google Compute Engine (GCE) API or even a stan‐
dard API like OCCI from the Open Grid Forum (OGF). These servers (see
Figure II-2) run on your machine or on the cloud provider’s servers and provide a new
endpoint to a CloudStack cloud. This new endpoint exposes different APIs and forwards
the requests to CloudStack by mapping the inbound API call to the appropriate Cloud‐
Stack API. Using these API interfaces is very handy if you are already accustomed to
the tools (e.g., command line, libraries) of public clouds like AWS and GCE and want
to keep on using the same tooling with your private CloudStack cloud. It’s also useful if
you want to provide some hybrid cloud functionality between AWS/GCE and a public
cloud running CloudStack.

Figure II-2. Apache CloudStack interfaces

CHAPTER 3

API Clients

3.1. The CloudStack API
The CloudStack API is not a standard like OGF OCCI or DMTF CIMI, but is easy to
learn. A mapping exists between the AWS API and the CloudStack API, as we will see
in Chapter 4. Recently, a Google Compute Engine interface was also developed that
maps the GCE REST API to the CloudStack API described here. The API docs are a
good place to start learning the extent of the API. Multiple clients exist on GitHub to
use this API, and you should be able to find one in your favorite language. The reference
documentation for the API and changes that might occur from version to version is
available online. This short section is aimed at providing a quick summary to give you
a base understanding of how to use this API. As a quick start, a good way to explore the
API is to navigate the dashboard with a firebug console (or similar developer console)
to study the queries.

In a succinct statement, the CloudStack query API can be used via HTTP GET requests
made against your cloud endpoint (e.g., http://localhost:8080/client/api). The API name
is passed using the command key, and the various parameters for this API call are passed
as key/value pairs. The request is signed using the secret key of the user making the call.
Some calls are synchronous; while some are asynchronous, this is documented in the
API docs. Asynchronous calls return a jobid, and the status and result of a job can be
queried with the queryAsyncJobResult call. Let’s get started and give an example of
calling the listUsers API in Python.

For more on CloudStack RESTful versus REST-like characteristics,
you might be interested to read a blog post of mine: To REST or not
to REST.

35

http://occi-wg.org
http://dmtf.org/standards/cloud
http://cloudstack.apache.org/docs/api/
http://bit.ly/GitHub_clients
http://docs.cloudstack.apache.org/projects/cloudstack-release-notes
http://cloudstack.apache.org/docs/api/
http://cloudstack.apache.org/docs/api/
http://bit.ly/REST_or_not
http://bit.ly/REST_or_not

Problem
To interact with your cloud programmatically, you need a set of API keys. Every cloud
has the same concept, which allows you to sign API requests. You have two keys: an
access key and a secret key.

Solution
In CloudStack, you generate your keys on the default dashboard within the Accounts
and Users panel. If you are using a public cloud based on CloudStack, they may give
you your keys at signup or through their own dashboard. Once you have your API keys,
you can form the API request as an HTTP GET request with a signature. The signature
is computed using Hashed Message Authentication Code (HMAC) and some base64
and url encoding.

Discussion
First, let’s get your keys. If you have access to the default dashboard of CloudStack, go
under Accounts, select the appropriate account, and then click Show Users. Select the
intended user and generate keys using the Generate Keys icon. You will see an API Key
and Secret Key field being generated. The keys will be of the form:

API Key : XzAz0uC0t888gOzPs3HchY72qwDc7pUPIO8LxC
 -VkIHo4C3fvbEBY_Ccj8fo3mBapN5qRDg_0_EbGdbxi8oy1A
Secret Key: zmBOXAXPlfb-LIygOxUVblAbz7E47eukDS_0
 JYUxP3JAmknOYo56T0R-AcM7rK7SMyo11Y6XW22gyuXzOdiybQ

Getting your API keys is crucial if you want to use any of the tools described in the book.

There is an API call registerUserKeys that can be used to get the
keys programmatically. However, this call is only allowed on the un‐
secure integration port and is only allowed for administrators of the
cloud.

3.2. Signing an API Request
Problem
Now that you have your API keys, you want to form an API request and sign it.

Solution
An API request is an HTTP GET request made to the cloud endpoint. The request uses
a query syntax similar to the AWS EC2 requests. A command key specifies the name of

36 | Chapter 3: API Clients

http://bit.ly/computing_signature
http://bit.ly/registerUserKeys
http://bit.ly/query_API

the API call, a set of parameters are passed as key/value pairs separated by an ampersand,
and a signature built with HMAC is added.

Discussion
Let’s do a step-by-step walkthrough of creating a request. Open a Python shell and
import the basic modules necessary to make the request. Note that this request could
be made many different ways, and this is just a low-level example. The urllib* modules
are used to make the HTTP request and perform URL encoding. The hashlib module
gives us the sha1 hash function. It is used to generate the hmac (Keyed Hashing for
Message Authentication) using the secretkey. The result is encoded using the base64
module:

$python
Python 2.7.3 (default, Nov 17 2012, 19:54:34)
[GCC 4.2.1 Compatible Apple Clang 4.1 ((tags/Apple/clang-421.11.66))] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import urllib2
>>> import urllib
>>> import hashlib
>>> import hmac
>>> import base64

Define the endpoint of the cloud, the command that you want to execute, the type of
the response (i.e., XML or JSON), and the keys of the user. Note that we do not put the
secretkey in our request dictionary, because it is only used to compute the hmac:

>>> baseurl='http://localhost:8080/client/api?'
>>> request={}
>>> request['command']='listUsers'
>>> request['response']='json'
>>> request['apikey']='plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9 \
...GAbBbf9EdM-kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg'
>>> secretkey='VDaACYb0LV9eNjTetIOElcVQkvJck_J_QljX_FcHRj87 \
...ZKiy0z0ty0ZsYBkoXkY9b7EhwJaw7FF3akA3KBQ'

Of course, replace the baseurl with the endpoint that you have access to and replace
the apikey and secretkey with your own.

Build the base request string, the combination of all the key/value pairs of the request.
In this example, we use the Python join function and we iterate over all the keys of the
request with request.keys(). Make sure to URL encode each value. Finally, join ev‐
erything with an ampersand:

>>> request_str='&'.join(['='.join([k,urllib.quote_plus(request[k])])
 for k in request.keys()])
>>> request_str
'apikey=plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9GAbBbf9EdM \
...-kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg&command=listUsers&response=json'

3.2. Signing an API Request | 37

Now we need to compute the signature. The signature is based on the hmac of the sig‐
nature string with the secretkey using the sha1 hash function. The resultant hmac is
subsequently 64-bit encoded and URL encoded.

The signature string used is similar to the base request string just shown, but the keys/
values are lowercase and joined in a sorted order. The + signs are also replaced
with %20:

>>> sig_str='&'.join(['='.join([k.lower(),urllib.quote_plus(request[k] \
....lower().replace('+','%20'))])for k in sorted(request.iterkeys())])
>>> sig_str
'apikey=plgwjfzk4gys3momtvmjuvg-x-jlwlnfauj9gabbbf9edm-kaymmailqzzq \
...1elzlyq_u38zcm0bewzgudp66mg&command=listusers&response=json'
>>> sig=hmac.new(secretkey,sig_str,hashlib.sha1).digest()
>>> sig
'M:]\x0e\xaf\xfb\x8f\xf2y\xf1p\x91\x1e\x89\x8a\xa1\x05\xc4A\xdb'
>>> sig=base64.encodestring(hmac.new(secretkey,sig_str,hashlib.sha1).digest())
>>> sig
'TTpdDq/7j/J58XCRHomKoQXEQds=\n'
>>> sig=urllib.quote_plus(base64.encodestring(hmac.new(\
...secretkey,sig_str,hashlib.sha1).digest()).strip())

Finally, build the entire API request string by joining the baseurl, the request string,
and the signature. You just need to use HTTP GET to get the response (HTTP POST is
also supported for some API calls). In Python, we can just add everything up and use
urllib2.urlopen():

>>> req=baseurl+request_str+'&signature='+sig
>>> req
'http://localhost:8080/client/api?apikey=plgWJfZK4gyS3mOMTVmjUVg ↵

 -X-jlWlnfaUJ9GAbBbf9EdM-kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg ↵

 &command=listUsers&response=json&signature=TTpdDq%2F7j%2FJ58XCRHomKoQXEQds%3D'
>>> res=urllib2.urlopen(req)
>>> res.read()
'{ "listusersresponse" : { "count":1 ,"user" :
 [{"id":"7ed6d5da-93b2-4545-a502-23d20b48ef2a",
 "username":"admin","firstname":"admin",
 "lastname":"cloud","created":"2012-07-05T12:18:27-0700",
 "state":"enabled","account":"admin",
 "accounttype":1,"domainid":"8a111e58-e155-4482-93ce-84efff3c7c77",
 "domain":"ROOT",
 "apikey":"plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9GAbBbf9EdM ↵

 -kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg",
 "secretkey":"VDaACYb0LV9eNjTetIOElcVQkvJck_J_QljX_FcHRj8
 7ZKiy0z0ty0ZshwJaw7FF3akA3KBQ",
 "accountid":"7548ac03-af1d-4c1c-9064-2f3e2c0eda0d"}]}}

38 | Chapter 3: API Clients

All the clients that you will find on GitHub will implement this signature technique, so
you should not have to do it by hand. However, it’s a great exercise to get familiar with
the API and understand how you can make requests to a cloud programmatically.

3.3. Installing CloudMonkey, the CloudStack Interactive
Shell
CloudMonkey is a subproject of Apache CloudStack and gives operators/developers the
ability to use any of the API methods. As of CloudStack 4.2, it has nice autocompletion,
history, and help features as well as an API discovery mechanism.

CloudMonkey can be used both as an interactive shell and as a command-line tool that
simplifies CloudStack configuration and management. It can be used with CloudStack
4.0-incubating release and later.

CloudMonkey is terrific because it gives you 100% coverage of the
CloudStack API. However, because you are using every call direct‐
ly, it can be a bit overwhelming, and some commands may appear a
bit lengthy.

Problem
You want use an interactive shell to configure, administer, or use your CloudStack cloud.
You are also looking for a CloudStack client that has 100% API coverage with which
you can write shell scripts.

Solution
Install CloudMonkey from a community-maintained package distribution or from
source using the Apache repository.

Discussion
CloudMonkey is dependent on readline, pygments, and prettytable. When installing
from source, you will need to resolve those dependencies. Using the PyPI repository,
the dependencies will be automatically installed.

There are two ways to get CloudMonkey: via the official CloudStack source releases or
via a community-maintained distribution in PyPI.

Users will want to use the community-maintained package on PyPI, and will install
CloudMonkey in a single command:

$ sudo pip install cloudmonkey

3.3. Installing CloudMonkey, the CloudStack Interactive Shell | 39

http://bit.ly/CloudMonkey
http://bit.ly/_CloudMonkey

Developers who want to look at the code should use the official Apache CloudStack
CloudMonkey Git repository, clone the repository, and install it:

$ git clone https://git-wip-us.apache.org/repos/asf/cloudstack-cloudmonkey.git
$ sudo python setup.py install

If the installation is successful, you should be able to open the cloudmonkey_ interac‐
tive shell by typing cloudmonkey in the command line. The following output should
appear:

$ cloudmonkey
☁ Apache CloudStack cloudmonkey 5.0.0. Type help or ? to list commands.

>

You can use CloudMonkey as an interactive shell, but it can be used as a straightfoward
CLI, passing the commands to the cloudmonkey command as shown here:

$ cloudmonkey list users

As such, it can be used in shell scripts, it can receive commands via stdin, and its output
can be parsed like any other Unix commands via grep or awk or whichever command
you need to use to process it.

3.4. Configuring CloudMonkey
Problem
With CloudMonkey installed, you want to configure it with your API keys and your
cloud endpoint.

Solution
Launch the CloudMonkey interactive shell and use the set command to define your
endpoint and your keys. You can also edit the configuration file at ~/.cloudmonkey/
config and enter the values directly.

Discussion
To set up these values interactively from the CloudMonkey prompt, use the set com‐
mand. The API and secretkeys are obtained via the CloudStack UI or via your cloud
provider. You can use CloudMonkey to interact with a local cloud, and even with a
remote public cloud. You just need to set the host, port, protocol, and keys properly.
For instance, with CloudStack running locally, do the following:

$ cloudmonkey
☁ Apache CloudStack cloudmonkey 4.1.0-snapshot. Type help or ? to list commands.

40 | Chapter 3: API Clients

> set prompt myprompt>
myprompt> set host localhost
myprompt> set port 8080
myprompt> set protocol http
myprompt> set apikey <your api key>
myprompt> set secretkey <your secret key>

To configure CloudMonkey, you can also edit the ~/.cloudmonkey/config file in the user’s
home directory as shown here (the values can also be set interactively at the cloudmon
key prompt; logs are kept in ~/.cloudmonkey/log, history is stored in ~/.cloudmonkey/
history, and discovered APIs are listed in ~/.cloudmonkey/cache):

$ cat ~/.cloudmonkey/config
[core]
log_file = /Users/sebastiengoasguen/.cloudmonkey/log
asyncblock = true
paramcompletion = false
history_file = /Users/sebastiengoasguen/.cloudmonkey/history

[ui]
color = true
prompt = >
display = table

[user]
secretkey =VDaACYb0LV9eNjTetIOElcVQkvJck_J_QljX_FcHR
apikey = plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9GAbBbf9

[server]
path = /client/api
host = localhost
protocol = http
port = 8080
timeout = 3600

The number of key/value pairs returned by the API calls can be large, resulting in a very
long output. To enable easier viewing of the output, you can use a tabular display. You
can even choose your set of column fields with a filter.

To enable it, use the set function to change the display value and create filters like so:

> set display table
> list users filter=id,domain,account
count = 1
user:
+--------------------------------------+--------+---------+
| id | domain | account |
+--------------------------------------+--------+---------+
| 7ed6d5da-93b2-4545-a502-23d20b48ef2a | ROOT | admin |
+--------------------------------------+--------+---------+

3.4. Configuring CloudMonkey | 41

3.5. Using CloudMonkey as an Interactive Shell
Problem
You have installed and configured CloudMonkey, and you now want to explore the
available API calls and get some information on the API call parameters.

Solution
Start the interactive shell and use the tab autocompletion feature to discover the API.
Use the help functionality to list the parameters that a specific API needs, including the
mandatory and optional parameters.

Discussion
The best way to start learning CloudMonkey is to use the interactive shell. Simply type
cloudMonkey at the prompt to set the configuration parameters.

At the CloudMonkey prompt, press the Tab key twice; you will see all potential verbs
available. Pick one, enter a space, and then press Tab twice. You will see all actions
available for that verb.

By picking one action (e.g., create network) and entering a space plus the Tab key, you
will obtain the list of parameters for that specific API call:

cloudmonkey>create network
account= domainid= isAsync=
networkdomain= projectid= vlan=
acltype= endip= name=
networkofferingid= startip= vpcid=
displaytext= gateway= netmask=
physicalnetworkid= subdomainaccess= zoneid=

To get additional help on that specific API call, you can use the -h, --help, or -help
options. The result will be the list of arguments for that call. Specifically, you will see
the list of required arguments and the list of optional ones:

cloudmonkey>create network -h
Creates a network
Required args: displaytext name networkofferingid zoneid
Args: account acltype displaytext domainid endip gateway isAsync
name netmask networkdomain networkofferingid physicalnetworkid
projectid startip subdomainaccess vlan vpcid zoneid

42 | Chapter 3: API Clients

To find out the required parameters value, using a debugger console
on the CloudStack UI might be very useful. For instance, using Fire‐
bug on Firefox, you can navigate the UI and check the parameters
values for each call you are making as you navigate the UI.

3.6. Starting a Virtual Machine Instance with
CloudMonkey
Problem
CloudMonkey can perform every CloudStack API call. You want to start an instance in
your cloud.

Solution
Use the deploy virtualmachine call and pass a zone ID, a template ID, and a service
offering ID as parameters. To obtain those IDs, you make other calls using
CloudMonkey.

Discussion
To start a virtual machine instance (what I call the “Hello, world” of cloud), we will use
the deploy virtualmachine API call:

cloudmonkey>deploy virtualmachine -h
Creates and automatically starts a virtual machine based
on a service offering, disk offering, and template.
Required args: serviceofferingid templateid zoneid
Args: account diskofferingid displayname domainid group hostid
hypervisor ipaddress iptonetworklist isAsync keyboard keypair
name networkids projectid securitygroupids securitygroupnames
serviceofferingid size startvm templateid userdata zoneid

The required arguments are serviceofferingid, templateid, and zoneid.

In order to specify the template that we want to use, we can list all available templates
with the following call:

> list templates filter=id,displaytext templatefilter=executable
 count = 36
 template:
 +--------------------------------------+--------------------------------+
 | id | displaytext |
 +--------------------------------------+--------------------------------+
 | 3235e860-2f00-416a-9fac-79a03679ffd8 | Windows Server 2012 R2 WINRM |
 | 20d4ebc3-8898-431c-939e-adbcf203acec | Linux Ubuntu 13.10 64-bit |
 | 70d31a38-c030-490b-bca9-b9383895ade7 | Linux Ubuntu 13.10 64-bit |

3.6. Starting a Virtual Machine Instance with CloudMonkey | 43

 | 4822b64b-418f-4d6b-b64e-1517bb862511 | Linux Ubuntu 13.10 64-bit |
 | 39bc3611-5aea-4c83-a29a-7455298241a7 | Linux Ubuntu 13.10 64-bit |
...<snipped>

The IDs that you will use will differ from this example. Make sure you
use the ones that correspond to your CloudStack cloud. In this snip‐
pet, I used exoscale and only showed the beginning output of the first
template. Depending on your cloud provider, you will see a differ‐
ent output.

Similar to getting the serviceofferingid, you would do the following:

> list serviceofferings filter=id,name
 count = 7
 serviceoffering:
 +--------------------------------------+-------------+
 | id | name |
 +--------------------------------------+-------------+
 | 71004023-bb72-4a97-b1e9-bc66dfce9470 | Micro |
 | b6cd1ff5-3a2f-4e9d-a4d1-8988c1191fe8 | Tiny |
 | 21624abb-764e-4def-81d7-9fc54b5957fb | Small |
 | b6e9d1e8-89fc-4db3-aaa4-9b4c5b1d0844 | Medium |
 | c6f99499-7f59-4138-9427-a09db13af2bc | Large |
 | 350dc5ea-fe6d-42ba-b6c0-efb8b75617ad | Extra-large |
 | a216b0d1-370f-4e21-a0eb-3dfc6302b564 | Huge |
 +--------------------------------------+-------------+

Note that we can use the Linux pipe as well as standard Linux commands within the
interactive shell. Finally, we would start an instance with the following call:

cloudmonkey>deploy virtualmachine templateid=20d4ebc3-8898-431c-939e-adbcf203acec
 zoneid=1128bd56-b4d9-4ac6-a7b9-c715b187ce11
 serviceofferingid=71004023-bb72-4a97-b1e9-bc66dfce9470
 id = 5566c27c-e31c-438e-9d97-c5d5904453dc
 jobid = 334fbc33-c720-46ba-a710-182af31e76df

This is an asynchronous API call which returns a jobid. You can query the status of the
job with the queryAsyncJobresult API:

> query asyncjobresult jobid=334fbc33-c720-46ba-a710-182af31e76df
 accountid = b8c0baab-18a1-44c0-ab67-e24049212925
 cmd = com.cloud.api.commands.DeployVMCmd
 created = 2014-03-05T13:40:18+0100
 jobid = 334fbc33-c720-46ba-a710-182af31e76df
 jobinstanceid = 5566c27c-e31c-438e-9d97-c5d5904453dc
 jobinstancetype = VirtualMachine
 jobprocstatus = 0
 jobresultcode = 0
 jobstatus = 0
 userid = 968f6b4e-b382-4802-afea-dd731d4cf9b9

44 | Chapter 3: API Clients

http://exoscale.ch

Once the machine is being deployed you can list it:

 > list virtualmachines filter=id,displayname
 count = 1
 virtualmachine:
 +--------------------------------------+-------------+
 | id | displayname |
 +--------------------------------------+-------------+
 | 5566c27c-e31c-438e-9d97-c5d5904453dc | foobar |
 +--------------------------------------+-------------+

The instance can be stopped and you would see a different state when listing the virtual
machines:

 > stop virtualmachine id=5566c27c-e31c-438e-9d97-c5d5904453dc
 jobid = 391b4666-293c-442b-8a16-aeb64eef0246

 > list virtualmachines filter=id,state
 count = 1
 virtualmachine:
 +--------------------------------------+---------+
 | id | state |
 +--------------------------------------+---------+
 | 5566c27c-e31c-438e-9d97-c5d5904453dc | Stopped |
 +--------------------------------------+---------+

Depending on your CloudStack setup, create a sshkeypair with create sshkeypair,
a securitygroup with create securitygroup, and add some rules to it. Enjoy Cloud‐
Monkey as it is a very nice tool that provides support for the entire CloudStack API.

3.7. Using Apache Libcloud with CloudStack
Apache Libcloud is another Python-based client that you can use to interact with the
CloudStack API. Where CloudMonkey provides 100% API coverage, Libcloud only
provides a small subset of that API. Its aim is to be a common API that abstracts all the
differences between cloud providers’ APIs. Libcloud supports over 20 cloud providers,
and therefore the base libcloud API represents the lowest common denominator
among all of them.

The CloudStack driver in libcloud is actively maintained and used by companies like
SixSq, CloudControl, and Cloudify. It is a good choice if you are looking for a Python
binding and trying to build an application that interacts with multiple cloud providers
(e.g., CloudStack, OpenStack, AWS EC2, Google GCE).

Documentation for libcloud is quite complete and the community strives to keep it up
to date. Check the CloudStack-driver-specific documentation for a deeper dive into the
methods available.

3.7. Using Apache Libcloud with CloudStack | 45

http://libcloud.apache.org
http://sixsq.com
http://www.cloudcontrol.com
http://cloudifysource.org
http://docs.libcloud.apache.org/en/latest/
http://bit.ly/driver-specific

Problem
You are looking for a Python module to write scripts that automate tasks in your Cloud‐
Stack cloud. In addition, you need this Python module to support other types of cloud
because you are interested in using a single API in your multiclouds application.

Solution
Install Apache Libcloud, a Python module that provides a single API for over 25 cloud
providers. Libcloud supports the basic compute functionality on cloud providers like
Rackspace, Google GCE, and AWS EC2, but also storage and load-balancing APIs. Using
your API keys and endpoint, create a Driver object by instantiating the CloudStack
provider class. You can then access the base libcloud API to list images, machine types,
locations, and more.

Discussion
If you are familiar with PyPI, installing libcloud is as simple as:

$ sudo pip install apache-libcloud

A successful installation should allow you to import the libcloud module within a
Python interactive shell:

$ python
Python 2.7.6 (default, Nov 12 2013, 13:26:39)
[GCC 4.2.1 Compatible Apple Clang 4.1 ((tags/Apple/clang-421.11.66))] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import libcloud
>>>

Developers who want to check the code behind the CloudStack driver might want to
clone the repository. You can choose whether you want to clone from the GitHub mirror:

$ git clone https://github.com/apache/libcloud.git

or the Apache source repository:

$ git clone https://git-wip-us.apache.org/repos/asf/libcloud.git

If you have cloned the repository, you install libcloud with:

$ cd libcloud
$ sudo python ./setup.py install

The CloudStack driver is located in /path/to/libcloud/source/libcloud/
compute/drivers/cloudstack.py. You can file bugs on the libcloud JIRA;
bug reports are very welcome.

46 | Chapter 3: API Clients

http://bit.ly/libcloud_JIRA

With libcloud installed either via PyPI or via the source, you can now open a Python
interactive shell, create an instance of the CloudStack driver, and call the available
methods via the libcloud API. You will need to know the endpoint of the CloudStack
API server and your API keys. You can reuse the one from Recipe 3.4.

First, you need to import the libcloud modules and create a CloudStack driver:

>>> from libcloud.compute.types import Provider
>>> from libcloud.compute.providers import get_driver
>>> Driver = get_driver(Provider.CLOUDSTACK)

Then, using your keys and endpoint, create a connection object. Note that this is a local
test and thus not secured. If you use a CloudStack public cloud, make sure to use SSL
properly (i.e., secure=True):

>>> apikey='plgWJfZK4gyS3mlZLYq_u38zCm0bewzGUdP66mg'
>>> secretkey='VDaACYb0LV9eNjeq1EhwJaw7FF3akA3KBQ'
>>> host='http://localhost:8080'
>>> path='/client/api'
>>> conn=Driver(key=apikey,secret=secretkey,secure=False,host='localhost', \
...port='8080',path=path)

To explore the available methods, you can type help(conn) at the Python shell, which
will give you access to the CloudStack-specific methods and the associate docstrings.
With the connection object in hand, you now use the libcloud base API to list such
things as the templates (i.e., images) and the service offerings (i.e., sizes). Python lists
are returned, where each element in the list is an instance of an image and a size class:

>>> conn.list_images()
[<NodeImage: id=13ccff62-132b-4caf-b456-e8ef20cbff0e,
 name=tiny Linux, driver=CloudStack ..>]
>>> conn.list_sizes()
[<NodeSize: id=ef2537ad-c70f-11e1-821b-0800277e749c,
name=tinyOffering, ram=100 disk=0 bandwidth=0 price=0 driver=CloudStack ..>,
<NodeSize: id=c66c2557-12a7-4b32-94f4-48837da3fa84,
name=Small Instance, ram=512 disk=0 bandwidth=0 price=0 driver=CloudStack ..>,
<NodeSize: id=3d8b82e5-d8e7-48d5-a554-cf853111bc50,
name=Medium Instance, ram=1024 disk=0 bandwidth=0 price=0 driver=CloudStack ..>]

The create_node method is used to start a virtual machine. Under the covers, the driver
makes use of the deployVirtualMachine API that we have seen in CloudMonkey.
create_node will take an instance name, a template, and an instance type as arguments.
It will return an instance of a CloudStackNode that has some attributes and additional
extensions methods, such as ex_stop and ex_start:

>>> images=conn.list_images()
>>> offerings=conn.list_sizes()
>>> node=conn.create_node(name='foobar',image=images[0],size=offerings[0])
>>> help(node)
>>> node.get_uuid()
'b1aa381ba1de7f2d5048e248848993d5a900984f'

3.7. Using Apache Libcloud with CloudStack | 47

http://bit.ly/libcloud_base_API

>>> node.name
u'foobar'

This gives you a brief idea of what you can do with Apache Libcloud and how you use
it. Although the base API is quite small, as soon as most drivers have an implementation
of a similar functionality, the libcloud community tries to unify the methods being
used. Recently, the management of SSH key pairs used to access the instances has been
promoted to the base API. It is very likely that the management of security groups will
also be incorporated in the base API.

3.8. Managing Key Pairs and Security Groups Using
Libcloud
Problem
You have a CloudStack cloud that makes use of SSH key pairs and security groups. You
want to list/create/delete key pairs as well as list/create/delete security groups and au‐
thorize some inbound traffic in those security groups.

Solution
You use the key pairs libcloud API calls, which are part of the base libcloud API. And
you use the extension methods (with the ex- prefix) to manage your security groups.

Discussion
In public clouds like Amazon EC2, the use of SSH key pairs is the de facto standard to
access instances. CloudStack also supports this method of accessing instances and
thankfully, libcloud too. Let’s look at an example. Given a conn object obtained from
the previous interactive session, you can list, create, and delete key pairs:

conn.list_key_pairs()
conn.create_key_pair(name='foobar')
conn.delete_key_pair(name='foobar')

Management of security groups is also available, but as mentioned, is not part of the
base API. Instead it is available as so-called extension methods that have the ex_ prefix.
Here we show how to list, create, and delete a security group, as well as add an ingress
rule to open port 22 to the world (both key pair and security groups are essential for
access to a CloudStack basic zone like exoscale and other public clouds like
Amazon EC2):

conn.ex_list_security_groups()
conn.ex_create_security_group(name='libcloud')
conn.ex_authorize_security_group_ingress(securitygroupname='libcloud',
 protocol='TCP',startport=22,

48 | Chapter 3: API Clients

http://bit.ly/key_pairs
http://www.exoscale.ch

 cidrlist='0.0.0.0/0')
conn.ex_delete_security_group('libcloud')

While these two functionalities are very interesting for Amazon-like public clouds, there
is also support in the libcloud CloudStack driver for advanced zones. You can list
networks, start instances in an advanced zone, and set up port forwarding rules as well
as IP forwarding rules.

3.9. Hybrid Cloud Applications Using Libcloud
Problem
You want to write an application that accesses an on-premise CloudStack cloud and a
public cloud like AWS EC2. This could be the case when you have some hybrid cloud
setup—for example, with CloudStack being used to run stable workloads on-premise,
and EC2 being used for burst compute needs.

Solution
You use libcloud because you know it supports many cloud providers, including
CloudStack, EC2, and GCE. Using your API keys for the clouds you want to use, you
create connection objects using the appropriate provider and iterate over those two
drivers. The base libcloud API will be common to both drivers.

Discussion
One of the interesting use cases of Libcloud is that you can use multiple cloud providers,
(e.g., AWS, Rackspace, OpenNebula, vCloud, etc.). You can then create driver instances
to each of these clouds and create your own multicloud application. In the following
example, we instantiate the libcloud CloudStack driver on exoscale and the Amazon
EC2 driver in the US WEST region. We then print the location of each zone the drivers
are connected to as well as the list of SSH key pairs existing in each cloud:

#!/usr/bin/env python

import os

from libcloud.compute.types import Provider
from libcloud.compute.providers import get_driver

apikey=os.getenv('EXOSCALE_API_KEY')
secretkey=os.getenv('EXOSCALE_SECRET_KEY')
Driver = get_driver(Provider.EXOSCALE)
exoconn=Driver(key=apikey,secret=secretkey)

apikey = os.getenv('AWSAccessKeyId')
secretkey = os.getenv('AWSSecretKey')

3.9. Hybrid Cloud Applications Using Libcloud | 49

http://exoscale.ch

Driver = get_driver(Provider.EC2_US_WEST)
ec2conn = Driver(ACCESS_ID, SECRET_KEY)

drivers = [exoconn, ec2conn]
for driver in drivers:
 print driver.list_locations()
 print driver.list_key_pairs()

From this basic setup, you can imagine how you would write an application that would
manage instances in different cloud providers. In this example, you might also notice
that we instantiated the exoscale driver a bit differently than in Recipe 3.8. Indeed,
libcloud also implements CloudStack-specific cloud providers. This means that there
are definitions for existing public clouds that are based on CloudStack, like exoscale,
iKoula, and the Korean Telecom cloud KTUCloud.

3.10. IPython Interactive Shell with Libcloud
Problem
Writing Python scripts to interact with your cloud can be error prone. You are looking
for an interactive shell that is similar to CloudMonkey but that you can use with multiple
clouds.

Solution
Using libcloud and IPython, create an interactive shell that contains an instantiated
driver to your cloud. You can then explore the libcloud API with the nice tab com‐
pletion feature of IPython, log all your commands for rapid prototyping, and
much more.

Discussion
To wrap up this quick tour of libcloud, I want to leave you with a fully working example
of an interactive shell to exoscale. It makes use of IPython, which you will need to install.
Using pip, you can install it with one command:

$ sudo pip install ipython

I find it extremely useful, because IPython brings logging capability, tab completion, as
well as history. These simple features can come in handy when doing debugging/testing
work. Using IPython requires an account on exoscale, and you have to store your keys
as environment variables:

#!/usr/bin/env python

import sys
import os

50 | Chapter 3: API Clients

http://exoscale.ch
http://ikoula.com
http://ucloudbiz.olleh.com
http://exoscale.ch

from IPython.terminal.embed import InteractiveShellEmbed

from libcloud.compute.types import Provider
from libcloud.compute.providers import get_driver

apikey=os.getenv('EXOSCALE_API_KEY')
secretkey=os.getenv('EXOSCALE_SECRET_KEY')

Driver = get_driver(Provider.EXOSCALE)

conn=Driver(key=apikey,secret=secretkey)

shell = InteractiveShellEmbed(banner1="Hello from Libcloud Shell!")
shell()

Copy this script to your local machine and execute it, and you will have an interactive
shell prompt. Loaded in this shell will be the conn object that contains all the libcloud
methods available for CloudStack.

3.11. Installing and Configuring jclouds CLI
jclouds is a Java wrapper for many cloud providers’ APIs. It is used in a large number
of cloud applications to access providers that do not offer a standard API. jclouds is
similar to the libcloud philosophy in that it aims to offer a common API that abstracts
the differences in cloud providers’ APIs. It solves the standard issue without defining
one. jclouds-cli is a command-line interface that uses jclouds. It could be seen as an
equivalent to CloudMonkey.

However, CloudMonkey covers the entire CloudStack API and jclouds-cli does not.
It offers basic functionality for managing virtual machines plus management of blob‐
store (i.e., S3 like) and configuration management via Chef. You should see it as an
example of what you can do with jclouds without being a Java developer.

jclouds is a top-level project at the Apache Software Foundation.
jclouds-cli is not part of the jclouds official ASF release but is
available on GitHub. Development activity may have slowed down.

Problem
You are a Java developer looking for a cloud API abstraction layer that allows you to
develop applications that use multiple clouds (public or private).

3.11. Installing and Configuring jclouds CLI | 51

http://jclouds.apache.org

Solution
Use Apache jclouds, a Java toolkit that allows you to build applications that are portable
among clouds. The Apache jclouds website describes the toolkit as follows:

Apache jclouds is an open source multi-cloud toolkit for the Java platform that gives you
the freedom to create applications that are portable across clouds while giving you full
control to use cloud-specific features.

Discussion
To give you a taste of jclouds, we are going to install and configure the jclouds command-
line interface.

First, clone jclouds-cli from GitHub and build it with Maven—the same maven that
we used to build CloudStack (yes, it’s a Java project):

$ git clone https://github.com/jclouds/jclouds-cli.git
$ cd jclouds-cli
$ mvn install

Now, find the tarball generated by the build in assembly/target, extract the tarball in the
directory of your choice, and add the bin directory to your path. For instance:

$ export PATH=/Users/sebastiengoasguen/Documents/jclouds-cli-1.7.0/bin

You then define a few environmental variables to set your cloud endpoint and your
credentials (i.e., API and secret keys). The ones listed here are just examples, so adapt
to your own endpoint and keys, as you did before:

$ export JCLOUDS_COMPUTE_API=cloudstack
$ export JCLOUDS_COMPUTE_ENDPOINT=http://localhost:8080/client/api
$ export JCLOUDS_COMPUTE_CREDENTIAL=_UKIzPgw7BneOyJO621Tdlslicg
$ export JCLOUDS_COMPUTE_IDENTITY=mnH5EbKcKeJdJrvguEIwQG_Fn-N0l

You should now be able to use jclouds-cli. Check that it is in your path and runs; you
should see the following output:

sebmini:jclouds-cli-1.7.0-SNAPSHOT sebastiengoasguen$ jclouds-cli
 _ _ _
 (_) | | | |
 _ ____| | ___ _ _ _ | | ___
 | |/ ___) |/ _ \| | | |/ || |/___)
 | ((___| | |_| | |_| ((_| |___ |
 _| |____)_|___/ ____|____(___/
(__/

 jclouds cli (1.7.0-SNAPSHOT)
 http://jclouds.org

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.

52 | Chapter 3: API Clients

https://jclouds.apache.org/

Hit '<ctrl-d>' to shutdown jclouds cli.

jclouds> features:list
State Version Name Repository
[installed] [1.7.0-SNAPSHOT] jclouds-guice jclouds-1.7.0-SNAPSHOT
[installed] [1.7.0-SNAPSHOT] jclouds jclouds-1.7.0-SNAPSHOT
[installed] [1.7.0-SNAPSHOT] jclouds-blobstore jclouds-1.7.0-SNAPSHOT
[installed] [1.7.0-SNAPSHOT] jclouds-compute jclouds-1.7.0-SNAPSHOT
[installed] [1.7.0-SNAPSHOT] jclouds-management jclouds-1.7.0-SNAPSHOT
[uninstalled] [1.7.0-SNAPSHOT] jclouds-api-filesystem jclouds-1.7.0-SNAPSHOT
[installed] [1.7.0-SNAPSHOT] jclouds-aws-ec2 jclouds-1.7.0-SNAPSHOT
[uninstalled] [1.7.0-SNAPSHOT] jclouds-aws-route53 jclouds-1.7.0-SNAPSHOT
[installed] [1.7.0-SNAPSHOT] jclouds-aws-s3 jclouds-1.7.0-SNAPSHOT
[uninstalled] [1.7.0-SNAPSHOT] jclouds-aws-sqs jclouds-1.7.0-SNAPSHOT
[uninstalled] [1.7.0-SNAPSHOT] jclouds-aws-sts jclouds-1.7.0-SNAPSHOT
...<snip>

You are now up and running with jclouds-cli. Congratulations!

I edited the output of jclouds-cli to gain some space. There are a
lot more providers available.

3.12. Using jclouds CLI with CloudStack
Problem
You have installed and configured the jclouds CLI and want to use it with your Cloud‐
Stack cloud to start instances.

Solution
Obtain the uuid of the image you want to use with the jclouds image list command.
Obtain the uuid of the machine type you want to use with the jclouds hardware
list command. Finally, start an instance with the jclouds node create command.

Discussion
The CloudStack API driver is not installed by default. Install it with the following:

jclouds> features:install jclouds-api-cloudstack

For now, we will only test the virtual machine management functionality. Pretty basic,
but that’s what we want to do to get a feel for jclouds-cli. If you have set your endpoint
and keys properly, you should be able to list the location of your cloud like so:

3.12. Using jclouds CLI with CloudStack | 53

$ jclouds location list
[id] [scope] [description] [parent]
cloudstack PROVIDER https://api.exoscale.ch/compute
1128bd56-b4d9-4ac6-a7b9-c715 ZONE CH-GV2 cloudstack

Again, this is an example. You will see something different depending on your endpoint.

You can list the service offerings as follows:

$ jclouds hardware list
[id] [ram] [cpu] [cores]
71004023-bb72-4a97-b1e9-bc66dfce9470 512 2198.0 1.0
b6cd1ff5-3a2f-4e9d-a4d1-8988c1191fe8 1024 2198.0 1.0
21624abb-764e-4def-81d7-9fc54b5957fb 2048 4396.0 2.0
b6e9d1e8-89fc-4db3-aaa4-9b4c5b1d0844 4096 4396.0 2.0
c6f99499-7f59-4138-9427-a09db13af2bc 8182 8792.0 4.0
350dc5ea-fe6d-42ba-b6c0-efb8b75617ad 16384 8792.0 4.0
a216b0d1-370f-4e21-a0eb-3dfc6302b564 32184 17584.0 8.0

List the images available with the following:

$ jclouds image list
[id] [location] [os family] [os version] [status]
0f9f4f49-afc2-4139-b26b-b05a9 windows null AVAILABLE
1d16c78d-268f-47d0-be0c-b80d3 unrecognized null AVAILABLE
3cfd96dc-acce-4423-a095-e558f unrecognized null AVAILABLE
...<snip>

We see that the OS family is not listed properly, probably due to some regex used by
jclouds to guess the OS type. Unfortunately, the name is not given.

To start an instance, we can check the syntax of jclouds node create:

$ jclouds node create --help
DESCRIPTION
 jclouds:node-create

 Creates a node.

SYNTAX
 jclouds:node-create [options] group [number]

ARGUMENTS
 group
 Node group.
 number
 Number of nodes to create.
 (defaults to 1)

We need to define the name of a group and give the number of the instance that we want
to start, plus the hardware and image ID. In terms of hardware, we are going to use the
smallest possible hardware, and for image, we give a uuid from the previous list. To list

54 | Chapter 3: API Clients

the running instances, jclouds node list will do the trick, and to get more information
about a specific node, jclouds node info will be your friend:

$ jclouds node create --ImageId 1d16c78d-268f-47d0-be0c-b80d31e765d2
 --smallest foobar 1
$ jclouds node info 4e733609-4c4a-4de1-9063-6fe5800ccb10

And that’s pretty much what jclouds-cli is about. With this short intro, you are well
on your way to using jclouds-cli. You may prefer it to CloudMonkey or Libcloud. If
you are a Java developer, it might be a better platform to build on. CloudStack does not
provide an object store, so the blobstore functionality is not going to be useful to us.
Check out the interactive shell, the blobstore, and the chef facility to automate VM
configuration. Remember that jclouds is actually foremost a Java library that you can
use to write other applications. You can use jclouds directly without making use of
this CLI.

3.13. Using CloStack: A Clojure Client for CloudStack
CloStack is a Clojure client for Apache CloudStack. Clojure is a dynamic programming
language for the Java Virtual Machine (JVM). It is compiled directly in JVM bytecode
but offers the dynamic and interactive nature of an interpreted language like Python.
Clojure is a dialect of LISP and, as such, is mostly a functional programming language.
Clojure is gaining a lot of traction recently, one reason among distributed computing
folks being the coreasync library, which makes writing efficient multithreaded appli‐
cations extremely fast and concise. Pallet is a good example of a software based on
Clojure and built for cloud automation.

You can try Clojure in your browser and get familiar with its read-eval-print loop
(REPL). To get started, you can follow the tutorial for non-LISP programmers through
this web-based REPL.

Problem
You are writing a Clojure project that needs to access a CloudStack cloud. You need a
CloudStack client written in Clojure.

Solution
You use CloStack. Install Leiningen and use the REPL to get familiar with the Clojure
syntax if you are not already used to it. Install CloStack and use the REPL to make your
first Clojure base calls to a CloudStack cloud.

3.13. Using CloStack: A Clojure Client for CloudStack | 55

http://clojure.org
https://github.com/clojure/core.async
http://palletops.com
http://tryclj.com
http://bit.ly/Clojure_tutorial
https://github.com/pyr/clostack.git
https://github.com/technomancy/leiningen

Discussion
Leiningen is a tool for managing Clojure projects easily. With lein, you can create the
skeleton of Clojure project as well as start a REPL to test your code.

Installing the latest version of Leiningen is easy: get the script, make it executable, and
set it in your path. You are done.

The first time you run lein repl, it will boostrap itself:

$ lein repl
Downloading Leiningen to /Users/sebgoa/.lein/self-installs
 /leiningen-2.3.4-standalone.jar now...
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 13.0M 100 13.0M 0 0 1574k 0 0:00:08 0:00:08 --:--:-- 2266k
nREPL server started on port 58633 on host 127.0.0.1
REPL-y 0.3.0
Clojure 1.5.1
 Docs: (doc function-name-here)
 (find-doc "part-of-name-here")
 Source: (source function-name-here)
 Javadoc: (javadoc java-object-or-class-here)
 Exit: Control+D or (exit) or (quit)
 Results: Stored in vars *1, *2, *3, an exception in *e

user=> exit
Bye for now!

Now that you have your own Clojure REPL, get a taste for it. Here is how you would
add 2 and 2:

user=> (+ 2 2)
4

And how you would define a function:

user=> (defn f [x y]
 #_=> (+ x y))
#'user/f
user=> (f 2 3)
5

This should give you a taste of functional programming. For more, check out Luke
VanderHart and Ryan Neufeld’s Clojure Cookbook, and Chas Emerick, Brian Carper,
and Christophe Grand’s Clojure Programming, both from O’Reilly.

Let’s get started with CloStack. To install it, like we did with several packages already,
clone the GitHub repository and start lein repl:

$ git clone https://github.com/pyr/clostack.git
$ cd clostack
$ lein repl

56 | Chapter 3: API Clients

https://github.com/technomancy/leiningen
http://bit.ly/latest_Leiningen
http://shop.oreilly.com/product/0636920029786.do
http://shop.oreilly.com/product/0636920013754.do
https://github.com/pyr/clostack.git

<...snip...>
nREPL server started on port 58655 on host 127.0.0.1
REPL-y 0.3.0
Clojure 1.5.1
 Docs: (doc function-name-here)
 (find-doc "part-of-name-here")
 Source: (source function-name-here)
 Javadoc: (javadoc java-object-or-class-here)
 Exit: Control+D or (exit) or (quit)
 Results: Stored in vars *1, *2, *3, an exception in *e

user=> exit

The first time that you start the REPL, lein will download all the clostack dependen‐
cies. I skipped this in the example.

In order to make your first clostack call, export a few environment variables to define
your cloud endpoint and your API keys:

$ export CLOUDSTACK_ENDPOINT=http://localhost:8080/client/api
$ export CLOUDSTACK_API_KEY=HGWEFHWERH8978yg98ysdfghsdfgsagf
$ export CLOUDSTACK_API_SECRET=fhdsfhdf869guh3guwghseruig

Then relaunch the REPL and import the clostack client:

$ lein repl
nREPL server started on port 59890 on host 127.0.0.1
REPL-y 0.3.0
Clojure 1.5.1
 Docs: (doc function-name-here)
 (find-doc "part-of-name-here")
 Source: (source function-name-here)
 Javadoc: (javadoc java-object-or-class-here)
 Exit: Control+D or (exit) or (quit)
 Results: Stored in vars *1, *2, *3, an exception in *e

user=> (use 'clostack.client)
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder
 for further details.
nil
user=> (def cs (http-client))
#'user/cs

You can safely discard the warning message, which only indicates that clostack is meant
to be used as a library in a Clojure project. Define a client to your CloudStack endpoint
and make your first API call like so:

user=> (list-zones cs)
{:listzonesresponse {:count 1,
 :zone [{:id "1128bd56-b4d9-4ac6-a7b9-c715b187ce11",
 :name "CH-GV2", :networktype "Basic",

3.13. Using CloStack: A Clojure Client for CloudStack | 57

 :securitygroupsenabled true,
 :allocationstate "Enabled",
 :zonetoken "ccb0a60c-79c8-3230",
 :dhcpprovider "VirtualRouter",
 :localstorageenabled true}]}}

To explore the API calls that you can make, the REPL features tab completion (just like
CloudMonkey and the libcloud IPython shell). Enter list or de and press the Tab key.
You should see the following:

user=> (list
list list*
list-capabilities list-disk-offerings
list-firewall-rules list-hypervisors
list-iso-permissions list-isos
list-load-balancer-rules list-network-ac-ls
list-os-categories list-os-types
list-project-accounts list-project-invitations
list-remote-access-vpns list-resource-limits
list-snapshot-policies list-snapshots
list-tags list-template-permissions
list-volumes list-vp-cs
list-vpn-customer-gateways list-vpn-gateway
list?

user=> (de
dec dec'
default-data-readers definline
defmulti defn
defrecord defreq
delay? delete-account-from-project
delete-iso delete-lb-stickiness-policy
delete-port-forwarding-rule delete-project
delete-snapshot delete-snapshot-policies
delete-template delete-volume
delete-vpn-gateway deliver
derive descendants
detach-volume

To pass arguments to a call, follow the syntax:

user=> (list-templates cs :templatefilter "executable")

By now, this should look very familiar to what you have done before, but the functional
programming aspect of Clojure will throw you for a loop at first. Hang in there.

3.14. Starting a Virtual Machine with CloStack
Problem
You want to start a virtual machine in your cloud using CloStack.

58 | Chapter 3: API Clients

Solution
Obtain the uuids of the zone, template, and service offering you want to use, and then
call the deploy-virtual-machine function. You can query the status of this asynchro‐
nous job with the query-async-job function.

Discussion
To deploy a virtual machine, our litmus test of Cloud, you need to get the serviceof
feringid or instance type, the templateid (also known as the image ID), and the
zoneid. The call is then very similar to CloudMonkey and returns a jobid:

user=> (deploy-virtual-machine cs
 :serviceofferingid "71004023-bb72-4a97-b1e9-bc66dfce9470"
 :templateid "1d961c82-7c8c-4b84-b61b-601876dab8d0"
 :zoneid "1128bd56-b4d9-4ac6-a7b9-c715b187ce11")
{:deployvirtualmachineresponse {:id "d0a887d2-e20b-4b25-98b3-c2995e4e428a",
 :jobid "21d20b5c-ea6e-4881-b0b2-0c2f9f1fb6be"}}

You can pass additional parameters to the deploy-virtual-machine call, such as the
keypair and the securitygroupname:

user=> (deploy-virtual-machine cs
 :serviceofferingid "71004023-bb72-4a97-b1e9-bc66dfce9470"
 :templateid "1d961c82-7c8c-4b84-b61b-601876dab8d0"
 :zoneid "1128bd56-b4d9-4ac6-a7b9-c715b187ce11"
 :keypair "exoscale")
{:deployvirtualmachineresponse {:id "b5fdc41f-e151-43e7-a036-4d87b8536408",
 :jobid "418026fc-1009-4e7a-9721-7c9ad47b49e4"}}

To query the asynchronous job, you can use the query-async-job API call:

user=> (query-async-job-result cs :jobid "418026fc-1009-4e7a-9721-7c9ad47b49e4")
{:queryasyncjobresultresponse {:jobid "418026fc-1009-4e7a-9721-7c9ad47b49e4",
 :jobprocstatus 0,
 :jobinstancetype "VirtualMachine",
 :accountid "b8c0baab-18a1-44c0-ab67-e24049212925",
 :jobinstanceid "b5fdc41f-e151-43e7-a036-4d87b8536408",
 :created "2013-12-16T12:25:21+0100",
 :jobstatus 0, :jobresultcode 0,
 :cmd "com.cloud.api.commands.DeployVMCmd",
 :userid "968f6b4e-b382-4802-afea-dd731d4cf9b9"}}

And finally, to destroy the virtual machine, you would pass the id of the VM to the
destroy-virtual-machine call like so:

user=> (destroy-virtual-machine cs :id "d0a887d2-e20b-4b25-98b3-c2995e4e428a")
{:destroyvirtualmachineresponse {:jobid "8fc8a8cf-9b54-435c-945d-e3ea2f183935"}}

With these simple basics, you can keep on exploring clostack, and learn more about
Clojure and the CloudStack API.

3.14. Starting a Virtual Machine with CloStack | 59

http://clojure.org

3.15. Use CloStack Within Your Own Clojure project
Problem
You have set up Leiningen and cloned the Git repository of CloStack, you know how to
deploy a virtual machine, and you are familiar with the Clojure syntax. Now you want
to write your own Clojure project that uses the CloStack library.

Solution
Use lein to create the skeleton of a new project and edit the project dependencies to
include CloStack as well as some logging libraries.

Discussion
Clostack is meant to be used as a library in a Clojure project. So how would you do it?
Let’s write a “Hello, World” in Clojure.

To write your own Clojure project that makes use of clostack, use lein to create a
project skeleton:

$ lein new foobar

lein will automatically create a src/foobar/core.clj file; edit it to replace the function
foobar with -main. This dummy function returns Hello, world!. Let’s try to execute
it. First, we will need to define the main namespace in the project.clj file. Edit it like so:

defproject foobar "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :main foobar.core
 :dependencies [[org.clojure/clojure "1.5.1"]])

Note the :main foobar.core.

You can now execute the code with lein run john. Indeed, if you check the -main
function in src/foobar/core.clj, you will see that it takes an argument. Surprisingly, you
should see the following output:

$ lein run john
john Hello, world!

Let’s now add the CloStack dependency and modify the main function to return the zone
of the CloudStack cloud.

Edit project.clj to add a dependency on clostack and a few logging packages:

60 | Chapter 3: API Clients

:dependencies [[org.clojure/clojure "1.5.1"]
 [clostack "0.1.3"]
 [org.clojure/tools.logging "0.2.6"]
 [org.slf4j/slf4j-log4j12 "1.6.4"]
 [log4j/apache-log4j-extras "1.0"]
 [log4j/log4j "1.2.16"
 :exclusions [javax.mail/mail
 javax.jms/jms
 com.sun.jdkmk/jmxtools
 com.sun.jmx/jmxri]]])

lein should have created a resources directory. In it, create a log4j.properties file like so:

$ more log4j.properties
Root logger option
log4j.rootLogger=INFO, stdout

Direct log messages to stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss}
 %-5p %c{1}:%L - %m%n

A discussion on logging is beyond the scope of this recipe; we merely add it in the
configuration for a complete example.

Now you can edit the code in src/foobar/core.clj with some basic calls:

(ns testclostack.core
 (:require [clostack.client :refer [http-client list-zones]]))

(defn foo
 "I don't do a whole lot."
 [x]
 (println x "Hello, world!"))

(def cs (http-client))

(defn -main [args]
 (println (list-zones cs))
 (println args "Hey Wassup")
 (foo args)
)

Simply run this Clojure code with lein run joe in the source of your project. And
that’s it—you have sucessfully discovered the very basics of Clojure and used the Cloud‐
Stack client clostack to write your first Clojure code.

3.15. Use CloStack Within Your Own Clojure project | 61

For something more significant, look at Pallet, which is a frame‐
work for configuration and automation of cloud resources orches‐
tration. Pallet is developed in Clojure.

3.16. StackerBee, a Ruby Client for CloudStack
CloudMonkey (see Recipe 3.3) and Libcloud (see Recipe 3.7) are Python based, CloStack
(see Recipe 3.13) is for Clojure, and jclouds (see Recipe 3.11) is for Java developers. If
you want to use Ruby, you may want to try Fog; however, support for the CloudStack
API is lagging behind a bit. StackerBee is a new Ruby client that works with all versions
of the CloudStack API.

Problem
Ruby is your favorite scripting language and you want to use it to automate some tasks
on your cloud. You also find that Fog does not support the latest CloudStack API.

Solution
Install the StackerBee Ruby gem and write a Ruby script that creates a connection object
to your CloudStack endpoint. The CloudStack APIs will be available on that object, and
you will be able to do everything you need.

Discussion
Install StackerBee in a single command:

$ sudo gem install stacker_bee

The StackerBee website has a lot of good documentation on what can be done, including
using a read-eval-print loop (REPL). Here we show a sample script that returns the
names of the virtual machines and the names of the SSH key pairs (you could of course
use the create APIs to create volumes, servers, key pairs, etc.):

#!/usr/bin/env ruby

require 'stacker_bee'

cloud_stack = StackerBee::Client.new(
 url: 'https://api.exoscale.ch/compute',
 api_key: '<your API key>',
 secret_key: '<your API secret key>',
 ssl_verify: false
)

vms = cloud_stack.list_virtual_machines()

62 | Chapter 3: API Clients

http://palletops.com
http://fog.io
https://github.com/promptworks/stacker_bee
http://fog.io
https://github.com/promptworks/stacker_bee

vms.each { |vm| puts vm[:displayname] }

keys = cloud_stack.list_ssh_key_pairs()

keys.each { |key| puts key[:name] }

A nice feature of StackerBee is that the API version is configurable. Us‐
ing the listApis through CloudMonkey, you can obtain a JSON file that
contains the description of all APIs available. StackerBee can use this
JSON file to construct the available methods. Just set the api_path to the
location of the JSON file containing all API responses:

StackerBee::Client.api_path = '/path/to/your/listApis/response.json'

3.16. StackerBee, a Ruby Client for CloudStack | 63

CHAPTER 4

API Interfaces

4.1. Installing and Configuring EC2Stack
CloudStack features a native EC2 query interface called awsapi that can be run on the
management server. EC2Stack is a new project by CloudStack committer Ian Duffy and
his friend Darren Brogan from University College Dublin. They did this as part of their
third-year school project. Building on their previous experience with gstack (see
Recipe 4.7), a GCE interface to CloudStack, they wrote a brand new EC2 interface to
CloudStack.

The interface uses Flask microframework and is written 100% in Python. It also features
a Vagrant box for easy testing, lots of unit tests, and automatic build tests (pep8, pylint
and coverage) via Travis CI. As part of Google Summer of Code 2014, Darren Brogan
is enhancing EC2Stack with additional API and unit tests.

Problem
You want an AWS EC2 compliant interface to your CloudStack cloud in order to use
AWS clients like the AWS CLI or Python Boto (Recipe 4.4).

Solution
Download EC2Stack from the Python package index or install it from source by cloning
the GitHub repository.

Discussion
Install EC2Stack using pip in a single operation:

$ sudo pip install ec2stack

65

http://bit.ly/ec2stack
http://bit.ly/gstack
http://flask.pocoo.org
http://vagrantup.com
https://travis-ci.org
http://aws.amazon.com/cli/

If you want to do it from source and check out the code, then clone the Git repository
and install it by hand:

$ git clone https://github.com/BroganD1993/ec2stack.git
$ sudo python ./setup.py install

You will now have ec2stack and ec2stack-configure binaries in your path. Before running
the application, you will need to configure it. As an example, to set it up with exoscale
do the following:

$ ec2stack-configure
EC2Stack bind address [0.0.0.0]:
EC2Stack bind port [5000]:
Cloudstack host [localhost]: api.exoscale.ch
Cloudstack port [8080]: 443
Cloudstack protocol [http]: https
Cloudstack path [/client/api]: /compute
Cloudstack custom disk offering name [Custom]:
Cloudstack default zone name: CH-GV2
Do you wish to input instance type mappings? (Yes/No): Yes
Insert the AWS EC2 instance type you wish to map: m1.small
Insert the name of the instance type you wish to map this to: Tiny
Do you wish to add more mappings? (Yes/No): No
INFO [alembic.migration] Context impl SQLiteImpl.
INFO [alembic.migration] Will assume non-transactional DDL.

Note that we created a mapping between the AWS m1.small in‐
stance type and the Tiny instance type in exoscale. You could add
more mappings.

You are now ready to run ec2stack. This setup process will run the application on the
foreground. Because it is a Flask application, you can deploy it as a service in several
ways. The Flask Documentation has good tips to do this. For testing, you can run it in
the foreground; EC2Stack will be listening for requests and be ready to forward them
to your CloudStack cloud:

$ ec2stack
 * Running on http://0.0.0.0:5000/
 * Restarting with reloader

4.2. Using the AWS CLI with EC2Stack
Problem
With EC2Stack running, you want to use the AWS CLI to make calls to your CloudStack
cloud.

66 | Chapter 4: API Interfaces

http://exoscale.ch
http://bit.ly/flask_docs
http://aws.amazon.com/cli/

Solution
Install the AWS CLI from PyPI and configure it. Register your API keys with EC2Stack
and start making requests to your cloud.

Discussion
Now that you are running EC2Stack on your local machine, you can use the AWS CLI
to make calls to it. Install the CLI with:

$ sudo pip install awscli

The Python AWS CLI available on PyPI may change often, which
can cause EC2Stack to break. You can install a specific awscli pack‐
age with:

$ sudo pip install awscli==1.3.10

Currently, EC2Stack stack has been tested with 1.3.10.

In addition, you need to register your API keys with the AWS CLI. If you have not used
exoscale (as in the preceding example), then choose the keys of your own CloudStack
deployment and use the appropriate region name:

$ aws configure
AWS Access Key ID [None]: PQogHs2sk_3uslfvrASjQFDlZbt0mEDd14iN
AWS Secret Access Key [None]: aHuDB2ewpgxVuQlvD9P1o313BioI1W4v
Default region name [None]: CH-GV2
Default output format [None]:

You can see these settings in the ~/.aws/config file. Check the AWS CLI reference for
further customization. The output format can be json, text, or table.

With your AWS CLI installed and configured, the final configuration step is to register
a user with EC2Stack. To be on the safe side, upgrade the requests module:

$ sudo pip install --upgrade requests

Register your API keys like so:

$ ec2stack-register http://localhost:5000 <API accesskey> <API secret key>

The command should return a Successfully Registered! message. At this stage, you
are now ready to use the AWS CLI (or Boto) and send requests to the EC2Stack endpoint:

$ aws ec2 describe-images --endpoint=http://localhost:5000
$ aws ec2 describe-key-pairs --endpoint=http://localhost:5000
$ aws ec2 create-key-pair --endpoint=http://localhost:5000 --key-name=test

To start an instance, for example:

4.2. Using the AWS CLI with EC2Stack | 67

https://pypi.python.org/pypi/awscli
http://aws.amazon.com/releasenotes/CLI
http://docs.aws.amazon.com/cli/latest/reference/

$ aws ec2 run-instances --image-id=20d4ebc3-8898-431c-939e-adbcf203acec
 --endpoint=http://localhost:5000

The image-id parameter is the CloudStack uuid corresponding to the template that you
want to start. You find it by running the aws describe-images call.

4.3. Improving the EC2Stack API Coverage
Problem
The EC2Stack API coverage does not cover all the AWS EC2 API. You want to add
an API.

Solution
Because EC2Stack is open source, you can easily contribute to it and add the API that
you need. Fork the project on GitHub and submit a pull request.

Discussion
Looking at the code, only the following AWS APIs are covered (more are being added
through a Google Summer of Code 2014 project):

def _get_action(action):
 actions = {
 'AttachVolume': volumes.attach_volume,
 'AuthorizeSecurityGroupEgress':
 security_groups.authenticate_security_group_egress,
 'AuthorizeSecurityGroupIngress':
 security_groups.authenticate_security_group_ingress,
 'CreateKeyPair': keypairs.create_keypair,
 'CreateSecurityGroup': security_groups.create_security_group,
 'CreateTags': tags.create_tags,
 'CreateVolume': volumes.create_volume,
 'DeleteKeyPair': keypairs.delete_keypair,
 'DeleteSecurityGroup': security_groups.delete_security_group,
 'DeleteTags': tags.delete_tags,
 'DeleteVolume': volumes.delete_volume,
 'DescribeAvailabilityZones': zones.describe_zones,
 'DescribeImageAttribute': images.describe_image_attribute,
 'DescribeImages': images.describe_images,
 'DescribeInstanceAttribute': instances.describe_instance_attribute,
 'DescribeInstances': instances.describe_instances,
 'DescribeKeyPairs': keypairs.describe_keypairs,
 'DescribeSecurityGroups': security_groups.describe_security_groups,
 'DescribeTags': tags.describe_tags,
 'DescribeVolumes': volumes.describe_volumes,
 'DetachVolume': volumes.detach_volume,
 'GetPasswordData': passwords.get_password_data,

68 | Chapter 4: API Interfaces

http://bit.ly/_ec2stack
http://bit.ly/covered_APIs

 'ImportKeyPair': keypairs.import_keypair,
 'RebootInstances': instances.reboot_instance,
 'RegisterSecretKey': register_secret_key,
 'RemoveSecretKey': remove_secret_key,
 'RevokeSecurityGroupEgress':
 security_groups.revoke_security_group_egress,
 'RevokeSecurityGroupIngress':
 security_groups.revoke_security_group_ingress,
 'RunInstances': instances.run_instance,
 'StartInstances': instances.start_instance,
 'StopInstances': instances.stop_instance,
 'TerminateInstances': instances.terminate_instance,
 }

Currently, EC2Stack is geared toward CloudStack basic zones. It is
aimed at clouds that resemble AWS EC2 and want to allow access
via SSH key pairs and security groups. Virtual private clouds (VPCs)
are not currently supported.

The code is quite clean and it will be easy to add more actions and provide a much better
coverage really soon. Pull requests are welcome if you are interested to contribute.

4.4. Using Python Boto with EC2Stack
There are many tools available to interface with an AWS-compatible API. In the previous
recipe, we saw how to use the AWS CLI, but now let’s briefly look at Boto. Boto is a
Python package that provides client-side bindings to work with the AWS API. It
interfaces with EC2 but also with S3, CF, EMR, and so on. Boto has extensive docu‐
mentation for each AWS service it supports.

Problem
You are familiar with Boto and want to use it with your CloudStack cloud.

Solution
Install Boto from the Python Package Index, and install and run an AWS EC2 interface
to CloudStack. Write a Python script that imports the Boto module and creates a con‐
nection object to your EC2 interface endpoint.

Discussion
Installation is as easy as:

$ sudo pip install boto

4.4. Using Python Boto with EC2Stack | 69

https://github.com/boto/boto
http://boto.readthedocs.org/en/latest/
http://boto.readthedocs.org/en/latest/

With Boto installed on your client machine and an AWS EC2 interface running in front
of CloudStack (see Recipe 4.1), you can now use the following script to start instances.
Just replace the access and secret keys with your own and update the endpoint:

#!/usr/bin/env python

import sys
import os
import boto
import boto.ec2

region = boto.ec2.regioninfo.RegionInfo(endpoint="localhost")
apikey='GwNnpUPrO6KgIdZu01z_ZhhZnKjtSdRwuYd4DvpzvFpyxGMvrzno2q05MB0ViBoFYtdqKd'
secretkey='t4eXLEYWw7chBhDlaKf38adCMSHx_wlds6JfSx3z9fSpSOm0AbP9Moj0oGIzy2LSC8iw'

def main():
 '''Establish connection to EC2 cloud'''
 conn =boto.connect_ec2(aws_access_key_id=apikey,
 aws_secret_access_key=secretkey,
 is_secure=False,
 region=region,
 port=5000,
 path="/",
 api_version="2014-02-01")

 '''Get list of images that I own'''
 images = conn.get_all_images()
 myimage = images[0]

 '''Pick an instance type'''
 vm_type='m1.small'
 reservation = myimage.run(instance_type=vm_type,security_groups=['default'])

if __name__ == '__main__':
 main()

With Boto, you can also interact with other AWS services like S3.
CloudStack has an S3 tech preview but it is backed by a standard
NFS server and therefore is not a true scalable distributed block
store. It will be removed from the code in an upcoming release. To
provide an S3 service in your cloud, I recommend using other soft‐
ware like RiakCS, Ceph radosgw, or Glusterfs S3 interface. These
systems handle large-scale chunking and replication.

This script will start an instance of type m1.small in a zone with security groups enabled.
You could pass additional parameters to the run method like a key pair. If you are like
me, you might like to have an interactive shell to your clouds, which means you might
want to use Boto in a slightly different way. I use IPython to get an interactive shell, with
tab completion, history, and logging capabilities. My shell script is:

70 | Chapter 4: API Interfaces

http://ipython.org

#!/usr/bin/env python

import boto
import boto.ec2
from IPython.terminal.embed import InteractiveShellEmbed

accesskey="my api key"
secretkey="my secret key"

region = boto.ec2.regioninfo.RegionInfo(endpoint="localhost")
conn = boto.connect_ec2(aws_access_key_id=accesskey,
 aws_secret_access_key=secretkey,
 is_secure=False,
 region=region,
 port=5000,
 path="/",
 api_version="2014-02-01")

ipshell = InteractiveShellEmbed(banner1="Hello, Cloud Shell!")
ipshell()

Starting this interactive shell, you can discover all the methods available in the
connection object by entering conn. and pressing the Tab key. The AWS interfaces to
CloudStack do not yet have 100% fidelity with the AWS API, so keep in mind that not
all Boto methods will work.

In this example, I used the EC2Stack interface, but you could also use
the interface that comes natively bundled with CloudStack. Using the
packages, it can be started with service cloudstack-awsapi start.
I personally prefer EC2Stack because I was involved in the develop‐
ment and it supports a newer api_version.

4.5. Installing Eutester to Test the AWS Compatibility of
Your CloudStack Cloud
Eutester was created by the folks at Eucalyptus to provide a framework to create func‐
tional tests for AWS zones and Eucalyptus-based clouds. What is interesting with Eu‐
tester is that it could be used to compare the AWS compatibility of multiple clouds.
Therefore, you might be wonder, “Can we use Eutester with CloudStack?” And the
answer is Yes. Certainly it could use more work, but the basic functionality is there. It
allows you to write test scenarios and compare the results between an AWS EC2 avail‐
ability zone and a CloudStack cloud.

4.5. Installing Eutester to Test the AWS Compatibility of Your CloudStack Cloud | 71

https://github.com/eucalyptus/eutester

Problem
You want to install Eutester to write integration tests for your AWS EC2 compliant cloud
endpoints.

Solution
Grab the binary from the Python package index with pip or build it from source from
GitHub.

Discussion
Install eutester with:

$ sudo pip install eutester

The master branch of eutester may still cause problems to list
images from a CloudStack cloud. I recently patched a fork of the
testing branch and opened an issue on their GitHub page. You
might want to check its status if you want to use Eutester heavily.

To use eutester with CloudStack, clone the testing branch of my Eutester fork. Then
install it by hand:

$ git clone -b testing https://github.com/runseb/eutester.git
$ cd eutester
$ sudo python ./setup.py install

4.6. Using Eutester with EC2Stack to Write Functional
tests
Problem
You have installed Eutester and want to write a Python script to issue requests to your
CloudStack cloud.

Solution
Import the eucaops module in a Python script, and create a connection object using
your endpoint information and your API keys. To explore your cloud interactively and
create testing scenarios, use IPython.

72 | Chapter 4: API Interfaces

https://pypi.python.org/pypi/pip
http://bit.ly/eutester_patch
http://bit.ly/eutester_issue
https://github.com/runseb/eutester

Discussion
Start a Python/IPython interactive shell or write a script that will import ec2ops and
create a connection object to your AWS EC2 compatible endpoint. For example, using
EC2Stack from Recipe 4.1:

#!/usr/bin/env python

from eucaops import ec2ops
from IPython.terminal.embed import InteractiveShellEmbed

accesskey="my api key"
secretkey="my secret key"

conn.ec2ops.EC2ops(endpoint="localhost",
 aws_access_key_id=apikey,
 aws_secret_access_key=secretkey,
 is_secure=False,
 port=5000,
 path="/",
 APIVersion="2014-02-01")

ipshell = InteractiveShellEmbed(banner1="Hello, Cloud Shell!")
ipshell()

Eutester, at the time of this writing, has 145 methods. Only the methods available
through the CloudStack AWS EC2 interface that you will be using will be available. For
example, get_zones and get_instances would return:

In [3]: conn.get_zones()
Out[3]: [u'ch-gva-2']

In [4]: conn.get_instances()
[2014-05-21 05:39:45,094] [EUTESTER] [DEBUG]:
--->(ec2ops.py:3164)Starting method: get_instances(self, state=None,
 idstring=None, reservation=None, rootdevtype=None, zone=None,
 key=None, pubip=None, privip=None, ramdisk=None, kernel=None,
 image_id=None, filters=None)
Out[4]:
[Instance:5a426582-3aa3-49e0-be3f-d2f9f1591f1f,
 Instance:95ee8534-b171-4f79-9e23-be48bf1a5af6,
 Instance:f18275f1-222b-455d-b352-3e7b2d3ffe9d,
 Instance:0ea66049-9399-4763-8d2f-b96e9228e413,
 Instance:7b2f63d6-66ce-4e1b-a481-e5f347f7e559,
 Instance:46d01dfd-dc81-4459-a4a8-885f05a87d07,
 Instance:7158726e-e76c-4cd4-8207-1ed50cc4d77a,
 Instance:14a0ce40-0ec7-4cf0-b908-0434271369f6]

This example shows that I am running eight instances at the moment in a zone called
ch-gva-2, one zone of the exoscale cloud. Selecting one of these instance objects will

4.6. Using Eutester with EC2Stack to Write Functional tests | 73

http://exoscale.ch

give you access to all the methods available for instances. You could also list, delete, and
create key pairs; list, delete, and create security groups; and so on.

Eutester is meant for building integration tests and easily creating test
scenarios. If you are looking for a client to build an application with,
use Boto from Recipe 4.4.

4.7. Installing and Configuring gstack: The CloudStack GCE
Interface
Google Compute Engine (GCE) is the Google public cloud. In December 2013, Google
announced the General Availability (GA) of GCE. With AWS and Microsoft Azure, it
is one of the three leading public clouds in the market. CloudStack has a GCE compatible
interface that lets users use the GCE clients (i.e., gcloud and gcutil) to access their
CloudStack cloud. Like EC2Stack, gstack is a Python Flask application that provides a
REST API compatible with the GCE API and forwards the requests to the corresponding
CloudStack API. The source is available on GitHub and the binary is downloadable
via PyPI.

Problem
You want to install gstack on your machine.

Solution
Grab the binary from the Python package index with pip or clone the source code from
GitHub.

Discussion
You can grab the gstack binary package from PyPI using pip in one single command:

$ sudo pip install gstack

Or, if you plan to explore the source and work on it, you can Clone the repository and
install it by hand:

$ git clone https://github.com/NOPping/gstack.git
$ sudo python ./setup.py install

Both of these installation methods will install a gstack and a gstack-configure binary in
your path.

Before running gstack you must configure it. To do so, run the following:

74 | Chapter 4: API Interfaces

https://cloud.google.com/products/compute-engine/
http://bit.ly/GA_of_GCE
http://bit.ly/gstack
https://pypi.python.org/pypi/gstack
https://pypi.python.org/pypi/pip
http://bit.ly/gstack_source

$ gstack-configure

And enter your configuration information when prompted. You will need to specify the
host and port where you want gstack to run on, as well as the CloudStack endpoint
that you want gstack to forward the requests to. In the following example, we use the
exoscale cloud:

$ gstack-configure
gstack bind address [0.0.0.0]: localhost
gstack bind port [5000]:
Cloudstack host [localhost]: api.exoscale.ch
Cloudstack port [8080]: 443
Cloudstack protocol [http]: https
Cloudstack path [/client/api]: /compute

The information will be stored in a configuration file available at ~/.gstack/gstack.conf:
$ cat ~/.gstack/gstack.conf
PATH = 'compute/v1/projects/'
GSTACK_BIND_ADDRESS = 'localhost'
GSTACK_PORT = '5000'
CLOUDSTACK_HOST = 'api.exoscale.ch'
CLOUDSTACK_PORT = '443'
CLOUDSTACK_PROTOCOL = 'https'
CLOUDSTACK_PATH = '/compute'

You can start gstack as easily as this:

$ gstack

Like EC2Stack, this will run gstack in the foreground. This is ac‐
ceptable for testing purposes but if you want to run gstack as a ser‐
vice in production setup, look at some of the WSGI HTTP servers
that can be used to serve gstack. In production, you will also need to
create a properly signed certificate for gstack and replace the self-
signed certificate.

4.8. Using gstack with the gcutil Tool
Problem
With gstack installed and running on your machine, you want to use the gcutil
command-line tool to issue requests to your CloudStack cloud.

Solution
Install and configure the standalone gcutil tool and start issuing commands to Cloud‐
Stack via your running gstack server.

4.8. Using gstack with the gcutil Tool | 75

http://exoscale.ch
http://bit.ly/standalone_WSGI

Discussion
The current version of gstack only works with the standalone version of gcutil.

Do not use the version of gcutil bundled in the Google Cloud SDK.
Instead, install the 0.14.2 version of gcutil.

gstack comes with a self-signed certificate for the local endpoint gstack/data/serv‐
er.crt, copy the certificate to the gcutil certificates file gcutil/lib/httplib2/httplib2/
cacerts.txt.

At this stage, your CloudStack API key and secret key need to be entered in the gcu
til auth_helper.py file in the gcutil/lib/google_compute_engine/gcutil/ directory.

This is far from ideal. Thus, we opened a feature request with Google to pass the cli
ent_id and client_secret as options to gcutil. Hopefully a future release of gcutil
will allow us to do so.

Create a cached parameters file for gcutil. Assuming you are running gstack on your
local machine, use the defaults that were suggested during the configuration phase.
Modify ~/.gcutil_params with the following:

--auth_local_webserver
--auth_host_port=9999
--dump_request_response
--authorization_uri_base=https://localhost:5000/oauth2
--ssh_user=root
--fetch_discovery
--auth_host_name=localhost
--api_host=https://localhost:5000/

Make sure to set the --auth_host_name variable to the same value
as GSTACK_BIND_ADDRESS in your ~/.gstack/gstack.conf file. Other‐
wise you will see certificates errors.

With this setup complete, gcutil will issue requests to the local Flask application, get
an OAuth token, issue requests to your CloudStack endpoint, and return the response
in a GCE compatible format.

With the setup steps complete, you can start issuing standard gcutil commands. For
illustration purposes, we use exoscale.

76 | Chapter 4: API Interfaces

http://bit.ly/standalone_gcutil
http://exoscale.ch

Because there are several semantic differences, you will notice that as
a project, we use the account information from CloudStack. Hence,
we pass our email address as the project value. This is another area
that could be improved.

Let’s start by listing the availability zones:

$ gcutil --cached_flags_file=~/.gcutil_params
 --project=runseb@gmail.com listzones
+----------+--------+------------------+
| name | status | next-maintenance |
+----------+--------+------------------+
| ch-gva-2 | UP | None scheduled |
+----------+--------+------------------+

Let’s list the machine types (or, in CloudStack terminology, the compute service offer‐
ings and the list of available images):

$ gcutil --cached_flags_file=~/.gcutil_params
 --project=runseb@gmail.com listmachinetypes
+-------------+----------+------+-----------+-------------+
| name | zone | cpus | memory-mb | deprecation |
+-------------+----------+------+-----------+-------------+
| Micro | ch-gva-2 | 1 | 512 | |
+-------------+----------+------+-----------+-------------+
| Tiny | ch-gva-2 | 1 | 1024 | |
+-------------+----------+------+-----------+-------------+
| Small | ch-gva-2 | 2 | 2048 | |
+-------------+----------+------+-----------+-------------+
| Medium | ch-gva-2 | 2 | 4096 | |
+-------------+----------+------+-----------+-------------+
| Large | ch-gva-2 | 4 | 8182 | |
+-------------+----------+------+-----------+-------------+
| Extra-large | ch-gva-2 | 4 | 16384 | |
+-------------+----------+------+-----------+-------------+
| Huge | ch-gva-2 | 8 | 32184 | |
+-------------+----------+------+-----------+-------------+

$./gcutil --cached_flags_file=~/.gcutil_params
 --project=runseb@gmail.com listimages
+---------------------------------+-------------+--------+
| name | deprecation | status |
+---------------------------------+-------------+--------+
CentOS 5.5(64-bit) no GUI (KVM)		Ready
Linux CentOS 6.4 64-bit		Ready
Linux CentOS 6.4 64-bit		Ready
Linux CentOS 6.4 64-bit		Ready
Linux CentOS 6.4 64-bit		Ready
Linux CentOS 6.4 64-bit		Ready
Linux Ubuntu 12.04 LTS 64-bit		Ready
Linux Ubuntu 12.04 LTS 64-bit		Ready

4.8. Using gstack with the gcutil Tool | 77

Linux Ubuntu 12.04 LTS 64-bit		Ready
Linux Ubuntu 12.04 LTS 64-bit		Ready
Linux Ubuntu 12.04 LTS 64-bit		Ready
Linux Ubuntu 13.04 64-bit		Ready
Linux Ubuntu 13.04 64-bit		Ready
Linux Ubuntu 13.04 64-bit		Ready
Linux Ubuntu 13.04 64-bit		Ready
Linux Ubuntu 13.04 64-bit		Ready
Windows Server 2008 R2 SP1		Ready
Windows Server 2008 R2 SP1		Ready
Windows Server 2008 R2 SP1		Ready
Windows Server 2008 R2 SP1		Ready
Windows Server 2012		Ready
Windows Server 2012		Ready
Windows Server 2012		Ready
Windows Server 2012		Ready
+---------------------------------+-------------+--------+

You can also list firewalls, which gstack maps to CloudStack security groups. To create
a security group, use the firewall commands:

$./gcutil --cached_flags_file=~/.gcutil_params
 --project=runseb@gmail.com addfirewall ssh --allowed=tcp:22

And get the details of this firewall with getfirewall:

$./gcutil --cached_flags_file=~/.gcutil_params
 --project=runseb@gmail.com getfirewall ssh
+---------------+-----------+
| property | value |
+---------------+-----------+
name	ssh
description	
creation-time	
network	
source-ips	0.0.0.0/0
source-tags	
target-tags	
allowed	tcp: 22
+---------------+-----------+

To start an instance, you can follow the interactive prompt given by gcutil. You will
need to pass the --permit_root_ssh flag, another one of those semantic and access
configuration details that needs to be ironed out. The interactive prompt will let you
choose the machine type and the image that you want; it will then start the instance:

$./gcutil --cached_flags_file=~/.gcutil_params
 --project=runseb@gmail.com addinstance foobar
Selecting the only available zone: CH-GV2
1: Extra-large Extra-large 16384mb 4cpu
2: Huge Huge 32184mb 8cpu
3: Large Large 8192mb 4cpu
4: Medium Medium 4096mb 2cpu

78 | Chapter 4: API Interfaces

5: Micro Micro 512mb 1cpu
6: Small Small 2048mb 2cpu
7: Tiny Tiny 1024mb 1cpu
7
1: CentOS 5.5(64-bit) no GUI (KVM)
2: Linux CentOS 6.4 64-bit
3: Linux CentOS 6.4 64-bit
4: Linux CentOS 6.4 64-bit
5: Linux CentOS 6.4 64-bit
6: Linux CentOS 6.4 64-bit
<...snip>
INFO: Waiting for insert of instance . Sleeping for 3s.
INFO: Waiting for insert of instance . Sleeping for 3s.

Table of resources:

+--------+--------------+--------------+----------+---------+
| name | network-ip | external-ip | zone | status |
+--------+--------------+--------------+----------+---------+
| foobar | 185.1.2.3 | 185.1.2.3 | ch-gva-2 | RUNNING |
+--------+--------------+--------------+----------+---------+

Table of operations:

+--------------+--------+--------------------------+----------------+
| name | status | insert-time | operation-type |
+--------------+--------+--------------------------+----------------+
| e4180d83-31d0| DONE | 2014-06-09T10:31:35+0200 | insert |
+--------------+--------+--------------------------+----------------+

You can, of course, list (with listinstances) and delete instances:

$./gcutil --cached_flags_file=~/.gcutil_params --project=runseb@gmail.com
 deleteinstance foobar
Delete instance foobar? [y/n]
y
WARNING: Consider passing '--zone=CH-GV2' to avoid the unnecessary
 zone lookup which requires extra API calls.
INFO: Waiting for delete of instance . Sleeping for 3s.
+--------------+--------+--------------------------+----------------+
| name | status | insert-time | operation-type |
+--------------+--------+--------------------------+----------------+
| d421168c-4acd| DONE | 2014-06-09T10:34:53+0200 | delete |
+--------------+--------+--------------------------+----------------+

gstack is still a work in progress, but it is now compatible with the GCE GA v1.0
API. The few differences in API semantics need to be investigated further and additional
API calls need to be supported. However, it provides a solid base to start working on
hybrid solutions between a GCE public cloud and a CloudStack-based private cloud.

4.8. Using gstack with the gcutil Tool | 79

http://bit.ly/GCE_API
http://bit.ly/GCE_API

4.9. Supporting the OCCI Standard in CloudStack
The Open Cloud Computing Interface (OCCI) is a standard from the Open Grid Forum
(OGF). OCCI was originally created to be a remote management API for the IaaS layer
of cloud computing but has since evolved to also address the PaaS and SaaS layers. With
CIMI, it is one of the two cloud standards for cloud providers’ APIs backed by a stand‐
ards organization. As we mentioned several times already, CloudStack has its own API,
which is not a standard. AWS EC2 and Google GCE are not standards either. Cloud
wrappers like libcloud and jclouds work well as unofficial standards that abstract dif‐
ferences in cloud providers’ APIs. Users interested in using OCCI or CIMI will need a
wrapper on top of the CloudStack API that will provide a CIMI or OCCI implementa‐
tion. There is currently no CIMI interface for CloudStack, but through rOCCI, there is
an OCCI interface. The rest of this recipe goes through installation, configuration, and
usage of the rOCCI CloudStack driver.

There are several implementations of OCCI. rOCCI is one of them
and is currently going through some refactoring.

Problem
The CloudStack API is very nice, but it is not backed by a standards organization. You
care about standards and you would like to use OCCI from the Open Grid Forum to
interact with your CloudStack cloud, removing any potential issues with a
nonstandard API.

Solution
Install a rOCCI server in your infrastructure and configure to use the CloudStack driv‐
er. You can then use any OCCI client to issue cloud requests to it. rOCCI will forward
the requests to the CloudStack API server and send the appropriate response back.

Discussion
Using OCCI with CloudStack involves running the rOCCI server and using an OCCI
client to interface to it. The rOCCI server provides the API mapping between the OCCI
standard API and the CloudStack API. In this discussion, the rOCCI client is used to
issue OCCI API requests instead of using a CloudStack-specific client like
CloudMonkey.

80 | Chapter 4: API Interfaces

http://occi-wg.org
https://www.ogf.org/ogf/doku.php
http://dmtf.org/standards/cloud
https://github.com/gwdg/rOCCI-server
http://occi-wg.org/community/implementations/

Install and run the rOCCI server
As we have done several times now, you can install the rOCCI server by cloning the
project on GitHub, doing a build using Ruby’s bundler, and setting up some configu‐
ration files:

$ git clone https://github.com/isaacchiang/rOCCI-server.git
$ gem install bundler
$ bundle install
$ cd etc/backend
$ cp cloudstack/cloudstack.json default.json

The rOCCI CloudStack backend is experimental and not merged in
the rOCCI server project yet.

Edit the default.json file to contain the information about your CloudStack cloud, your
endpoint, and your API keys. Start the rOCCI server in one shell:

$ bundle exec passenger start

The server should be running on http://0.0.0.0:3000, and you can try to run the basic
tests:

 $ bundle exec rspec

You are ready to install an OCCI client and use it to talk to the rOCCI server you just
started. The requests will be forwarded to your CloudStack endpoint.

Install the rOCCI client

Clone the rOCCI-cli client from GitHub. Use bundler again to build it and rake to
install it:

$ git clone https://github.com/gwdg/rOCCI-cli.git
$ cd rOCCI-cli
$ bundle install
$ bundle exec rake test
$ rake install

An occi binary should now be in your path. Try to use it by running the --help option:

$ occi --help

Test the OCCI client against the server
With your cloud endpoint and your API keys properly defined earlier in the json con‐
figuration file, you can use the OCCI client to list templates, locations, and start an

4.9. Supporting the OCCI Standard in CloudStack | 81

https://github.com/gwdg/rOCCI-server
http://bundler.io
https://github.com/gwdg/rOCCI-cli

instance. Similar to EC2Stack, you need to specify the endpoint of the rOCCI server
that’s running. Try a couple OCCI client commands:

$ occi --endpoint http://0.0.0.0:3000/ --action list --resource os_tpl

Os_tpl locations:
 os_tpl#6673855d-ce9b-4997-8613-6830de037a8f

$ occi --endpoint http://0.0.0.0:3000/ --action list --resource resource_tpl

Resource_tpl locations:
 resource_tpl##08ba0343-bd39-4bf0-9aab-4953694ae2b4
 resource_tpl##f78769bd-95ea-4139-ad9b-9dfc1c5cb673
 resource_tpl##0fd364a9-7e33-4375-9e10-bb861f7c6ee7

You will recognize the uuid from the templates and service offerings that you have
created in CloudStack. These uuid will be different. To start an instance:

$ occi --endpoint http://0.0.0.0:3000/
 --action create
 --resource compute
 --mixin os_tpl#6673855d-ce9b-4997-8613-6830de037a8f
 --mixin resource_tpl#08ba0343-bd39-4bf0-9aab-4953694ae2b4
 --resource-title foobar

And voilà! The holy grail again, you started an instance on a CloudStack cloud using
an OCCI client and an OCCI implementation on top of the CloudStack API.

82 | Chapter 4: API Interfaces

PART III

Configuration Management and
Advanced Recipes

Making API calls either to CloudStack directly or via an API interface compatible with
a public clouds API is really just the beginning. Ultimately, you want to use more ad‐
vanced tools that abstract these APIs, that allow you to make use of your cloud, and that
deploy applications easily and in a repeatable manner. We cover some of the well-known
configuration management tools (i.e., Ansible and Chef) as well as a relatively new tool
used in development (i.e., Vagrant). These tools are the foundation for automation and
rapid deployments. In combination with monitoring tools, they are often associated
with the DevOps movement.

http://devopsdays.org

CHAPTER 5

Configuration Management

Automation is key to a reproducible, failure-tolerant infrastructure. Cloud
administrators should aim to automate all steps of building their infrastructure and be
able to re-provision everything with a single click. This is possible through a combina‐
tion of configuration management, monitoring, and provisioning tools. To get started
in creating appliances that will be automatically configured and provisioned, three tools
stand out in the arsenal: Veewee, Packer, and Vagrant.

Veewee is being replaced by Packer. There is some effort to create a
CloudStack builder for Packer.

Vagrant is a tool to create lightweight, portable, and reproducible development envi‐
ronments. Specifically, it allows you to use configuration management tools to configure
a virtual machine locally (via VirtualBox) and then deploy it in the cloud via Vagrant
providers. Recipe 5.4 gives you an introduction to this development tool.

A new kid on the block in configuration management and orchestration is Ansible.
Ansible is based on SSH communications with the instances and a no-server setup. It
is push based at the core. It is easy to install and get started. Of course, just like Puppet,
Salt, and Chef, it can be used in conjunction with Vagrant. Ansible (Recipe 5.6) has some
great documentation, so we will go quickly through the installation process and dive
straight into some key concepts and a basic provisioning using Vagrant.

85

http://www.packer.io
http://bit.ly/Packer_builder
http://vagrantup.com
http://ansibleworks.com
http://docs.ansible.com/intro.html
http://bit.ly/with_Vagrant
http://docs.ansible.com

5.1. Installing Veewee
Problem
You need to build some virtual machine templates starting from Linux distribution ISOs.
The process should be fully scripted, and reproducible. You also want to be able to do
some minimal configuration, like bootstrapping a configuration management tool.

Solution
Install Veewee from GitHub.

Discussion
Veewee is a tool with which you can easily create appliances for different hypervisors.
It fetches the .iso of the distribution you want and builds the machine with a kickstart
file. It integrates with providers like VirtualBox so that you can build these appliances
on your local machine. It supports most commonly used OS templates. Coupled with
VirtualBox, it allows admins and devs to create reproducible base appliances. Getting
started with Veewee is a 10-minute exercise. The README is great, and there is also a
very nice post that guides you through your first box building.

Most folks will have no issues cloning Veewee from GitHub and building it. You will
need Ruby 1.9.2 or later, which you can get via rvm or your favorite Ruby version
manager:

$ git clone https://github.com/jedi4ever/veewee
$ gem install bundler
$ bundle install

Setting up an alias is handy at this point (e.g., alias veewee="bundle exec veewee").
You will need a virtual machine provider (e.g., VirtualBox, VMware Fusion, Parallels,
KVM). I personally use VirtualBox, but feel free to use whichever one best suits your
needs. You will then be able to start using veewee on your local machine.

5.2. Using Veewee to Create a Vagrant Base Box
Problem
Using Veewee, you want to create a virtual machine template from an ISO and you want
to export the template for later use with Vagrant.

86 | Chapter 5: Configuration Management

http://bit.ly/Veewee_tool
http://bit.ly/first_box

Solution
Select the Linux distribution that you want, define the box, configure some minimal
software requirements, and build the box. To export it for use with Vagrant, use the
export subcommand.

Discussion
With Veewee installed, you should be able to check all the available subcommands of
veewee vbox:

$ veewee vbox
Commands:
 veewee vbox build [BOX_NAME]
 veewee vbox copy [BOX_NAME] [SRC] [DST]
 veewee vbox define [BOX_NAME] [TEMPLATE]
 veewee vbox destroy [BOX_NAME]
 veewee vbox export [BOX_NAME]
 veewee vbox halt [BOX_NAME]
 veewee vbox help [COMMAND]
 veewee vbox list
 veewee vbox ostypes
 veewee vbox screenshot [BOX_NAME] [PNGFILENAME]
 veewee vbox sendkeys [BOX_NAME] [SEQUENCE]
 veewee vbox ssh [BOX_NAME] [COMMAND]
 veewee vbox templates
 veewee vbox undefine [BOX_NAME]
 veewee vbox up [BOX_NAME]
 veewee vbox validate [BOX_NAME]
 veewee vbox winrm [BOX_NAME] [COMMAND]

Options:
 [--debug] # enable debugging
 -w, --workdir, [--cwd=CWD] # Change the working directory.

Choose a template from the templates directory and define your first box. Here we call
it myfirstbox, but choose your own name:

$ veewee vbox define myfirstbox CentOS-6.5-x86_64-minimal

You should see that a defintions/ directory has been created; browse to it and inspect
the definition.rb file. You might want to comment out some lines, like removing chef
or puppet. If you don’t change anything and build the box, you will then be able to
validate the box with:

$ veewee vbox validate myfirstbox

To build the box, simply use the following:

$ veewee vbox build myfirstbox

5.2. Using Veewee to Create a Vagrant Base Box | 87

If you are creating another instance of VirtualBox, you should re‐
move the vmwarefusion.sh bootstrap script from the definition file.
Also note that the URLs of the ISOs used by Veewee may have
changed when a bug fix version was released. You might have to edit
the URL in the template directory.

Everything should be successful, and you should see a running VM in your VirtualBox
UI. To export it for use with Vagrant, veewee provides an export mechanism (really a
VBoxManage command):

$ veewee vbox export myfirstbox

At the end of the export, a .box file should be present in your directory, which you can
add to Vagrant with the vagrant box add command. The syntax will be given at the
end of the Veewee vbox export run.

Congratulations! You have built your first Veewee box, which you can now use with
Vagrant to install additional software and configure your applications.

5.3. Introducing Packer to Build Cloud Images
Packer does the same thing as Veewee but goes a step further. It helps you build base
boxes in a repeatable manner, but it also integrates with configuration management
systems for software provisioning on the images, and it provides a build mechanism to
export images in a format suitable for various clouds and virtualization systems (e.g.,
AWS EC2, Google GCE, Docker). Beyond building boxes for development, it helps you
build production appliances that are cloud ready. There is good documentation for
Packer.

Problem
As an example of using Packer, let us assume that you want to use Packer instead of
Veewee to build a XenServer Vagrant box.

Solution
Use the packer-xenserver project on GitHub. It is part of a Google Summer of Code
2014 project. Clone the repository, install Packer on your machine, and build the box.

Discussion
First, you will need to install Packer. Follow the download instructions and you will
have a packer binary in your path. Next, you need to clone the packer-xenserver repos‐
itory and build the box:

88 | Chapter 5: Configuration Management

http://www.packer.io
http://www.packer.io/docs
http://bit.ly/Packer_install

$ git clone https://github.com/imduffy15/packer-xenserver.git
$ cd packer-xenserver
$ packer build ./template.json

You can look at the template file to see how the box is being configured.

If you have developed Veewee definitions file, there is a veewee-to-
packer utility that helps you create a packer template file.

When this is done, you should see a XenServer.box file in the root directory. You are
now ready to work with Vagrant (Recipe 5.4). Add it to your list of Vagrant boxes with:

$ vagrant box add xenserver ./XenServer.box

Create a Vagrant project with Vagrant init (in the directory of your choice) and edit
the Vagrant file so that it uses the XenServer box you just added.

If you are not familiar with Vagrant yet, refer to Recipe 5.4 to get up
to speed.

Disable the folder syncing functionality and the virtual box guest addition check, as it
is not supported on XenServer. Define a private network as well, because host-only
networks are not supported on XenServer:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # All Vagrant configuration is done here. The most common configuration
 # options are documented and commented below. For a complete reference,
 # please see the online documentation at vagrantup.com.

 # Every Vagrant virtual environment requires a box to build off of.
 config.vm.box = "xenserver"

 config.vm.synced_folder ".", "/vagrant", disabled: true

 # disable checking for vbguest versions as its not supported on xenserver
 if Vagrant.has_plugin?("vagrant-vbguest")
 config.vbguest.auto_update = false
 end

5.3. Introducing Packer to Build Cloud Images | 89

http://bit.ly/Veewee-to-Packer

 config.vm.network :private_network, :auto_config => false ,
 :ip => "192.168.56.10"

 config.vm.provider "virtualbox" do |v|
 v.customize ["modifyvm", :id, "--memory", 2048]
 v.customize ["modifyvm", :id, "--nicpromisc2", "allow-all"]
 end

end

With this Vagrant file, you should be able to start the VM, SSH onto it, and check that
you have a Xen kernel:

$ vagrant up
$ vagrant ssh
Last login: Wed Jun 11 17:36:52 2014 from 10.0.2.2

XenServer dom0 configuration is tuned for maximum performance and reliability.

Configuration changes which are not explicitly documented or approved by Citrix
Technical Support, may not have been tested and are therefore not supported. In
addition, configuration changes may not persist after installation of a hotfix
or upgrade, and could also cause a hotfix or upgrade to fail.

Third party tools, which require modification to dom0 configuration, or
installation into dom0, may cease to function correctly after upgrade or hotfix
installation. Please consult Citrix Technical Support for advice regarding
specific tools.

Type "xsconsole" for access to the management console.

[vagrant@localhost ~]$ sudo su
[root@localhost vagrant]# xe vm-list
uuid (RO) : beb273f9-a322-4840-b861-2580fbdc67b4
 name-label (RW): Control domain on host: localhost.localdomain
 power-state (RO): running

This box has been uploaded to the Vagrant cloud, which you can get
directly by referencing config.vm.box = "duffy/xenserver" in
your Vagrant file. This work was done through a Google Summer of
Code 2014 project.

5.4. Installing Vagrant to Build and Test Cloud Images
Problem
Building reproducible systems can be challenging. You are looking for a software de‐
velopment tool that allows you to test your software configuration by deploying a virtual

90 | Chapter 5: Configuration Management

https://vagrantcloud.com

machine locally. You need a tool that helps you build automation and interacts with
most configuration management systems used today.

Solution
Install Vagrant from binary packages downloaded on the website, add boxes that you
created with Veewee (Recipe 5.1) or Packer (Recipe 5.3), and start working on your
software configuration.

Discussion
To install Vagrant, you can download the latest binaries. On Ubuntu, for instance, it will
be as easy as:

$ wget https://dl.bintray.com/mitchellh/vagrant/vagrant_1.6.2_x86_64.deb
$ dpkg -i vagrant_1.6.2_x86_64.deb

Vagrant will be in your path after the installation process (you can try the vagrant
--help command to make sure it is). Picking up from where we left off with Veewee,
we will add a box to Vagrant and customize it with shell scripts or much better, with
Puppet recipes, Chef cookbooks, Ansible playbooks, and so on. First, let’s add the box
to Vagrant:

$ vagrant box add 'myfirstbox' '/path/to/box/myfirstbox.box'

Then in a directory of your choice, create a Vagrant project:

$ vagrant init 'myfirstbox'

This will create a Vagrant file that we will later edit to customize the box. You can boot
the machine with vagrant up and once it’s up, you can SSH to it with vagrant ssh.

While Veewee is used to create a base box with almost no customization (except po‐
tentially a Chef and/or Puppet client), Vagrant is used to customize the box using the
Vagrant file. For example, to customize the myfirstbox that we just built, set the
memory to 2 GB, add a host-only interface with IP 192.168.56.10, and finally run a
bootstrap.sh script. We will have the following Vagrant file:

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 # Every Vagrant virtual environment requires a box to build off of.
 config.vm.box = "myfirstbox"
 config.vm.provider "virtualbox" do |vb|
 vb.customize ["modifyvm", :id, "--memory", 2048]
 end

 #host-only network setup
 config.vm.network "private_network", ip: "192.168.56.10"

 #Test script to install CloudStack

5.4. Installing Vagrant to Build and Test Cloud Images | 91

http://vagrantup.com
http://www.vagrantup.com/downloads.html
http://puppetlabs.com
http://www.getchef.com
http://www.ansible.com/home
http://bit.ly/add_box
http://bit.ly/customizing_defs

 config.vm.provision :shell, :path => "bootstrap.sh"

end

In this example, the bootstrap script should be placed in the root of the Vagrant project
directory. You are now ready to dig deeper into Vagrant provisioning and get a glimpse
of Vagrant’s awesome power. See the provisioner documentation and pick your favorite
configuration management tool. For example, with Chef, you would specify a cookbook
like so:

 config.vm.provision "chef_solo" do |chef|
 chef.add_recipe "mycookbook"
 end

The cookbook mycookbook will be in a cookbooks directory be in the root directory of
this Vagrant definition. For more information, check the Vagrant website and
experiment.

5.5. Using the Vagrant CloudStack Plug-In
Problem
You like testing your configurations locally, but you also want to take advantage of cloud
providers. You need to use a CloudStack-based cloud to provision your virtual machines
and use Vagrant to provision them with the required software.

Solution
Vagrant has a CloudStack plug-in that allows you to deploy virtual machine by sending
requests to the CloudStack cloud endpoint using the API. You install the CloudStack
Vagrant plug-in, define your boxes, and configure your deployments using your API
keys and cloud endpoint.

Discussion
What is very interesting with Vagrant is that you can use various plug-ins to deploy
machines on public clouds. There is a vagrant-aws plug-in to deploy on AWS and of
course a vagrant-cloudstack plug-in. You can get the latest CloudStack plug-in from
GitHub. You can install it directly with the vagrant command-line tool:

$ vagrant plugin install vagrant-cloudstack

Or if you are building it from source, clone the Git repository, build the gem, and install
it in Vagrant. Replace the path used here with the one on your machine.

$ git clone https://github.com/klarna/vagrant-cloudstack.git
$ gem build vagrant-cloudstack.gemspec
$ gem install vagrant-cloudstack-0.1.0.gem

92 | Chapter 5: Configuration Management

http://bit.ly/provisioner_docs
http://www.getchef.com
http://www.vagrantup.com
http://bit.ly/latest_plug-in

$ vagrant plugin install /Users/sebgoa/Documents/gitforks/ \
$ vagrant-cloudstack/vagrant-cloudstack-0.0.7.gem

Creating dummy boxes is easy to do—simply create a Vagrant file file and a metada‐
ta.json file like so:

$ cat metadata.json
{
 "provider": "cloudstack"
}
$ cat Vagrantfile
-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|
 config.vm.provider :cloudstack do |cs|
 cs.template_id = "a17b40d6-83e4-4f2a-9ef0-dce6af575789"
 end
end

Replace the value for cs.template_id with a uuid of a CloudStack template in your
cloud. CloudStack users will know how to easily get those uuids with CloudMonkey.
Then create a box file with the following:

$ tar cvzf cloudstack.box ./metadata.json ./Vagrantfile

Simply add the box in Vagrant with:

$ vagrant box add ./cloudstack.box

Remember that this is defining a local box, which references a tem‐
plate existing in the cloud. The only drawback to this process is that
there is potential for discrepancies between the box that exists on
your local machine and the template that is available in the cloud
provider being used. Ideally, you would build a cloud template lo‐
cally and register it in a public cloud, but this may not always be
possible. In any case, you need to create dummy boxes that use
existing templates available on the public cloud, as Vagrant will not
register/upload a local box to the cloud on its own.

You can now create a new Vagrant project:

$ mkdir cloudtest
$ cd cloudtest
$ vagrant init

And edit the newly created Vagrant file to use the cloudstack box. Add additional
parameters like SSH configuration, if the box does not use the default from Vagrant,
plus service_offering_id, and so on. Remember to use your own API and secret keys
and change the name of the box to what you created. For example, on exoscale:

5.5. Using the Vagrant CloudStack Plug-In | 93

http://www.exoscale.ch

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 # Every Vagrant virtual environment requires a box to build off of.
 config.vm.box = "cloudstack"

 config.vm.provider :cloudstack do |cs, override|
 cs.host = "api.exoscale.ch"
 cs.path = "/compute"
 cs.scheme = "https"
 cs.api_key = "PQogHs2sk_3..."
 cs.secret_key = "...NNRC5NR5cUjEg"
 cs.network_type = "Basic"

 cs.keypair = "exoscale"
 cs.service_offering_id = "71004023-bb72-4a97-b1e9-bc66dfce9470"
 cs.zone_id = "1128bd56-b4d9-4ac6-a7b9-c715b187ce11"

 override.ssh.username = "root"
 override.ssh.private_key_path = "/path/to/private/key/id_rsa_example"
 end

 # Test bootstrap script
 config.vm.provision :shell, :path => "bootstrap.sh"

end

The machine is brought up with:

$ vagrant up --provider=cloudstack

The following example output will follow:

$ vagrant up --provider=cloudstack
Bringing machine 'default' up with 'cloudstack' provider...
[default] Warning! The Cloudstack provider doesn't support any of the Vagrant
high-level network configurations (`config.vm.network`). They
will be silently ignored.
[default] Launching an instance with the following settings...
[default] -- Service offering UUID: 71004023-bb72-4a97-b1e9-bc66dfce9470
[default] -- Template UUID: a17b40d6-83e4-4f2a-9ef0-dce6af575789
[default] -- Zone UUID: 1128bd56-b4d9-4ac6-a7b9-c715b187ce11
[default] -- Keypair: exoscale
[default] Waiting for instance to become "ready"...
[default] Waiting for SSH to become available...
[default] Machine is booted and ready for use!
[default] Rsyncing folder: /Users/sebgoa/Documents/exovagrant/ => /vagrant
[default] Running provisioner: shell...
[default] Running: /var/folders/76/sx82k6cd6cxbp7_djngd17f80000gn/T

94 | Chapter 5: Configuration Management

 /vagrant-shell20131203-21441-1ipxq9e
Tue Dec 3 14:25:49 CET 2013
This works

Which is a perfect execution of my amazing bootstrap script:

#!/usr/bin/env bash

/bin/date
echo "This works"

You can now start playing with Chef cookbooks, Puppet recipes, and Ansible playbooks,
and automate the configuration of your cloud instances.

I would be remiss if I did not mention a nice feature of Vagrant. It
can handle multiple machine definitions. This means that in a sin‐
gle Vagrant file you can define different instances, boot them, and
provision them in parallel:

config.vm.define "web" do |web|
 web.vm.box = "tutorial"
end

config.vm.define "db" do |db|
 db.vm.box = "tutorial"
end

You can control each machine separately (i.e., vagrant up web and
vagrant up db) or all at once in parallel (i.e., vagrant up).

Let the fun begin. Pick your favorite configuration management tool, decide what you
want to provision, set up your recipes, and launch the instances.

5.6. Introducing Ansible to Configure Cloud Instances
Problem
You are looking for a configuration management system that can also perform remote
execution and complex application deployments that some people refer to as orches‐
tration. In addition, you are more familiar with Python than Ruby.

Solution
Use Ansible. Download the binary package via the Python Package Index and you are
ready to go.

Discussion
First, install ansible:

5.6. Introducing Ansible to Configure Cloud Instances | 95

http://bit.ly/multi-machine
http://bit.ly/complex_deployments
http://bit.ly/complex_deployments
http://www.ansibleworks.com

$ pip install ansible

Or get it via packages yum install ansible, apt-get install ansible if you have
set the proper repositories.

Let’s say you have two instances running and SSH access to them. Create an inventory
inv file with the IP addresses of the instances. For example:

185.1.2.3
185.3.4.5

Then run ping, your first Ansible command:

$ ansible all -i inv -m ping

You should see the following output:

185.1.2.3 | success >> {
 "changed": false,
 "ping": "pong"
}

185.3.4.5 | success >> {
 "changed": false,
 "ping": "pong"
}

And see how you can use Ansible as a remote execution framework:

$ ansible all -i inv -a "/bin/echo hello"
185.1.2.3 | success | rc=0 >>
hello

185.3.4.5 | success | rc=0 >>
hello

You should get the feel that Ansible is more than pure configuration management as it
can do remote execution, much like Salt or some old school multithreaded SSH execu‐
tion framework.

5.7. Provisioning with Ansible Playbooks
Problem
With Ansible installed, you want to use some existing configuration recipes to install
software on some remote systems. You also want to use it with Vagrant to test your
recipes locally, then deploy them on remote instances in the cloud.

96 | Chapter 5: Configuration Management

http://bit.ly/Ansible_install

Solution
Use the ansible-playbook command to execute a set of configuration tasks called plays
(hence the term playbook). You will need an inventory of machine and potentially some
additional options like SSH key pairs. Conveniently, Vagrant supports Ansible
provisioning natively. You can specify the playbooks you want to use when deploying a
machine with Vagrant as well as pass optional arguments to the deployment.

Discussion
Now check some of the Ansible examples available on GitHub. We are going to walk
through the WordPress example. Clone the entire project, go to the WordPress example,
and create an inventory file:

$ git clone https://github.com/ansible/ansible-examples.git
$ cd ansible-examples/wordpress-nginx

If you check the README.md file, it will tell you how to create the inventory. Create a
hosts file and add the IP addresses of the instances you had running in Recipe 5.6. Now
you can use the ansible-playbook command to start configuring the instances. If you
are using a special SSH key, then specify it with the --private-key option:

$ cp hosts.example hosts
$ vi hosts
$ ansible-playbook -i hosts --private-key=~/.ssh/id_rsa site.yml

Ansible will configure the machines and you will end up with two working WordPress
sites.

The previous example assumed some running instances (e.g., local VMs or in the cloud).
In this recipe, we are going to use Vagrant, but instead of using a shell or a puppet
provisioner, we are going to use the Ansible provisioner.

Go back to the Vagrant project directory we have been working on and edit the Vagrant
file. Remove the Puppet provisioning (or comment it out) and add:

Ansible test
config.vm.provision "ansible" do |ansible|
 ansible.playbook = "ansible/site.yml"
 ansible.verbose = "vvvv"
 ansible.host_key_checking = "false"
 ansible.sudo_user = "root"
 ansible.raw_arguments = "-s"
end

The site.yml playbook referenced needs to be located in the ansible subdirectory. You
can get the WordPress playbook that we used in Recipe 5.6. Clone the Ansible examples
repository, and copy the WordPress playbook in the ansible directory, for example:

5.7. Provisioning with Ansible Playbooks | 97

https://github.com/ansible/ansible-examples

mkdir ansible
cd ansible
git clone https://github.com/ansible/ansible-examples.git
cd ansible-examples/wordpress-nginx
cp -R * ../../

The complete Vagrant file will look like this:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.box = "centos64"
 config.vm.provider "virtualbox" do |vb|
 vb.customize ["modifyvm", :id, "--memory", 2048]
 vb.customize ["modifyvm", :id, "--nicpromisc2", "allow-all"]
 end

 config.vm.provision "ansible" do |ansible|
 ansible.playbook = "ansible/site.yml"
 ansible.inventory_path = "ansible/hosts"
 ansible.extra_vars = { ansible_ssh_user: 'vagrant'}
 ansible.verbose = "vvvv"
 ansible.host_key_checking = "false"
 ansible.sudo_user = "root"
 ansible.sudo = "True"
 ansible.raw_arguments = "-s"
 end

 # Bridge networking
 config.vm.network "private_network", ip: "192.168.50.110"

end

And start the instance once again:

$ vagrant up

Watch the output from the Ansible provisioning and, once finished, access the Word‐
Press application that was just configured.

You might have to edit the playbook. I removed the selinux task in
the MySQL setup.

98 | Chapter 5: Configuration Management

http://bit.ly/MySQL_setup

With a Vagrant VM set up and Ansible installed locally, you can always run
the playbook manually with:

$ ansible-playbook -i hosts -s -u vagrant \
 --private-key=/Users/sebgoa/.vagrant.d/insecure_private_key site.yml

Just replace the path of the Vagrant SSH key being used.

5.8. Ansible Provisioning with Vagrant CloudStack Plug-In
Problem
Mastering Ansible on a local test machine is very handy, but you are looking for more.
You want to use it to automatically configure cloud instances.

Solution
Vagrant comes with a CloudStack plug-in that can be used in combination with Ansi‐
ble. Vagrant will start the machine in your CloudStack cloud and then use Ansible with
the right options to apply the playbooks. In addition, Ansible comes with a dynamic
inventory script based on libcloud (Recipe 3.7) that will allow you to poll the CloudStack
endpoint, retrieve information about running instances, and build an inventory file
compatible with Ansible for later use.

Discussion
Provisioning locally in a VirtualBox VM is great, but we also want to be able to do the
same remotely and provision an instance in the cloud.

The only thing we need to do is to use the CloudStack plug-in in Vagrant, and update
the Vagrant file to contain API keys and a few pieces of information that your CloudStack
endpoint needs to start the instance. Here is a fully working example:

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.box ="centos-cloud"
 config.vm.host_name ="webserver"

 config.ssh.username = "root"
 config.ssh.private_key_path = "/Users/sebgoa/.ssh/id_rsa_oreilly"
 config.ssh.pty = "true"

 config.vm.provider :cloudstack do |cloudstack, override|
 cloudstack.api_key = ""
 cloudstack.secret_key = ""
 cloudstack.service_offering_id = "71004023-bb72-4a97-b1e9-bc66dfce9470"

5.8. Ansible Provisioning with Vagrant CloudStack Plug-In | 99

 cloudstack.keypair = "oreilly" # SSH Key pair to access machine
 end

 config.vm.provision "ansible" do |ansible|
 ansible.playbook = "ansible/site.yml"
 ansible.groups = {"wordpress-server" => ["default"]}
 ansible.verbose = "vvvv"
 ansible.host_key_checking = "false"
 ansible.sudo_user = "root"
 ansible.sudo = "True"
 ansible.raw_arguments = "-s"
 end

end

You will notice several things. We defined a config.ssh.username and a con
fig.ssh.private_key_path, which are used by Vagrant to SSH to the instance. We also
set config.ssh.pty to True to allow sudo commands over SSH on CentOS. The Cloud‐
Stack provider information will need your API and secret keys as well as the service
offering of the instance (e.g., two cores, 2 GB RAM) and if you are using SSH key pair
access, you will need to define that key pair.

The Ansible provisioning section is almost the same as with the local provisioning
example in Recipe 5.7. We only added a ansible.groups variable to make use of the
fact that Vagrant creates an Ansible inventory on the fly.

With this Vagrant file created, you can start the instance in your favorite CloudStack
cloud. When Ansible finishes, open your browser at the IP of your instance on port 80
and you will see a brand new WordPress site.

$ vagrant up --provider=cloudstack

Finally, Ansible features a set of scripts used to create an inventory of instances, grouped
by properties. The apache-libcloud script can be used to poll a CloudStack cloud for
its inventory of machines.

Get the script and the configuration file or clone the Ansible repo and go to the plugins/
inventory directory:

$ git clone https://github.com/ansible/ansible.git
$ cd plugins/inventory

Edit the configuration file (libcloud.ini) to point to your CloudStack endpoint and add
your API keys. The following example uses exoscale and sets the path to the inventory
cache to /home/sebgoa:

Ansible Apache Libcloud Generic inventory script

[driver]
provider = CLOUDSTACK
host = api.exoscale.ch

100 | Chapter 5: Configuration Management

http://docs.ansible.com/guide_vagrant.html
http://bit.ly/Ansible_scripts
http://bit.ly/dynamic_inventory
http://bit.ly/inventory_script
http://bit.ly/config_file

path = /compute
secure = True
verify_ssl_cert = True

key =
secret =

[cache]
cache_path=
cache_max_age=60

With this configuration set, you can generate an inventory with the following:

python ./apache-libcloud.py
{
 "0ea66049-9399-4763-8d2f-b96e9228e413": [
 "185.1.2.3"
],
 "80e7fc8e-0bd8-4c4d-9857-43dadbe95847": [
 "185.1.2.4"
],
 "key_foobar": [
 "185.1.2.3",
 "185.1.2.4"
],
 "sg_default": [
 "185.1.2.4"
],
 "sg_foobar": [
 "185.1.2.3"
]
}

You can work with all the instances in your cloud using this script (to learn more, check
the Ansible dynamic inventory documentation):

$ ansible all -i ./apache-libcloud.py --private-key=~/.ssh/id_rsa_exoscale \
> -m ping

5.9. Installing knife-cloudstack
Problem
Knife is a command-line utility for Chef, the configuration management system from
OpsCode. You use Chef and want to use Knife with your CloudStack cloud.

5.9. Installing knife-cloudstack | 101

http://bit.ly/dynamic_inventory

Solution
The Knife family of tools are drivers that automate the provisioning and configuration
of machines in the Cloud. knife-cloudstack is a CloudStack plug-in for Knife. Written
in Ruby, it is used by the Chef community.

Discussion
To install knife-cloudstack, you can simply install the gem or get it from GitHub:

$ sudo gem install knife-cloudstack

If successful, the knife command should now be in your path. Issue knife at the prompt
and see the various options and subcommands available.

If you want to use the version on GitHub simply clone it:

$ git clone https://github.com/CloudStack-extras/knife-cloudstack.git

If you clone the Git repo and make changes to the code, you will want to build and
install a new gem. As an example, in the directory where you cloned the knife-
cloudstack repo do the following:

$ gem build knife-cloudstack.gemspec
 Successfully built RubyGem
 Name: knife-cloudstack
 Version: 0.0.14
 File: knife-cloudstack-0.0.14.gem
$ gem install knife-cloudstack-0.0.14.gem
 Successfully installed knife-cloudstack-0.0.14
 1 gem installed
 Installing ri documentation for knife-cloudstack-0.0.14...
 Installing RDoc documentation for knife-cloudstack-0.0.14...

You will then need to define your CloudStack endpoint and your credentials in a knife.rb
file like so:

knife[:cloudstack_url] = "http://yourcloudstackserver.com:8080/client/api
knife[:cloudstack_api_key] = "Your CloudStack API Key"
knife[:cloudstack_secret_key] = "Your CloudStack Secret Key"

With the endpoint and credentials configured as well as knife-cloudstack installed,
you should be able to issue your first command. Remember that this is simply sending
a CloudStack API call to your CloudStack-based cloud provider. Later in the recipe, we
will see how to do more advanced things with knife-cloudstack. For example, to list
the service offerings (i.e., instance types) available on the iKoula Cloud, do this:

$ knife cs service list
Name Memory CPUs CPU Speed Created
m1.extralarge 15GB 8 2000 Mhz 2013-05-27T16:00:11+0200
m1.large 8GB 4 2000 Mhz 2013-05-27T15:59:30+0200

102 | Chapter 5: Configuration Management

m1.medium 4GB 2 2000 Mhz 2013-05-27T15:57:46+0200
m1.small 2GB 1 2000 Mhz 2013-05-27T15:56:49+0200

To list all the knife-cloudstack commands available just enter knife cs at the
prompt. You will see:

$ knife cs
Available cs subcommands: (for details, knife SUB-COMMAND --help)

** CS COMMANDS **
knife cs account list (options)
knife cs cluster list (options)
knife cs config list (options)
knife cs disk list (options)
knife cs domain list (options)
knife cs firewallrule list (options)
knife cs host list (options)
knife cs hosts
knife cs iso list (options)
knife cs template create NAME (options)
...

If you only have user privileges on the cloud you are using, as op‐
posed to admin privileges, do note that some commands won’t be
available to you. For instance, on the cloud I am using where I am a
standard user, I cannot access any of the infrastructure type com‐
mands like:

$ knife cs pod list
Error 432: Your account does not have the right to execute
 his command or the command does not exist.

Similar to CloudMonkey, you can pass a list of fields to output. To find the potential
fields, include the --fieldlist option at the end of the command. You can then pick
the fields that you want to output by passing a comma-separated list to the --fields
option like so:

$ knife cs service list --fieldlist
Name Memory CPUs CPU Speed Created
m1.extralarge 15GB 8 2000 Mhz 2013-05-27T16:00:11+0200
m1.large 8GB 4 2000 Mhz 2013-05-27T15:59:30+0200
m1.medium 4GB 2 2000 Mhz 2013-05-27T15:57:46+0200
m1.small 2GB 1 2000 Mhz 2013-05-27T15:56:49+0200

Key Type Value
cpunumber Fixnum 8
cpuspeed Fixnum 2000
created String 2013-05-27T16:00:11+0200
defaultuse FalseClass false
displaytext String 8 Cores CPU with 15.3GB RAM
domain String ROOT

5.9. Installing knife-cloudstack | 103

domainid String 1
hosttags String ex10
id String 1412009f-0e89-4cfc-a681-1cda0631094b
issystem FalseClass false
limitcpuuse TrueClass true
memory Fixnum 15360
name String m1.extralarge
networkrate Fixnum 100
offerha FalseClass false
storagetype String local
tags String ex10

$ knife cs service list --fields id,name,memory,cpunumber
id name memory cpunumber
1412009f-0e89-4cfc-a681-1cda0631094b m1.extralarge 15360 8
d2b2e7b9-4ffa-419e-9ef1-6d413f08deab m1.large 7680 4
8dae8be9-5dae-4f81-89d1-b171f25ef3fd m1.medium 3840 2
c6b89fea-1242-4f54-b15e-9d8ec8a0b7e8 m1.small 1740 1

5.10. Starting an Instance with Knife
Problem
You want to start an instance in the cloud using Knife and you’d like to configure it with
some recipes using Chef.

Solution
In order to manage instances, Knife has several commands:

• knife cs server list to list all instances
• knife cs server start to restart a paused instance
• knife cs server stop to suspend a running instance
• knife cs server delete to destroy an instance
• knife cs server reboot to reboot a running instance

And of course to create an instance, use knife cs server create.

Discussion
Knife will automatically allocate a public IP address and associate it with your running
instance. If you additionally pass some port forwarding rules and firewall rules, it will
set those up. You need to specify an instance type, from the list returned by knife cs
service list, as well as a template, from the list returned by knife cs template
list. The --no-boostrap option will tell Knife not to install Chef on the deployed

104 | Chapter 5: Configuration Management

instance. Syntax for the port forwarding and firewall rules are explained on the Knife
CloudStack website. Here is an example on the iKoula cloud in France:

$ knife cs server create --no-bootstrap --service m1.small
 --template "CentOS 6.4 - Minimal - 64bits" foobar

Waiting for Server to be created.......
Allocate ip address, create forwarding rules
params: {"command"=>"associateIpAddress",
 "zoneId"=>"a41b82a0-78d8-4a8f-bb79-303a791bb8a7",
 "networkId"=>"df2288bb-26d7-4b2f-bf41-e0fae1c6d198"}.
Allocated IP Address: 178.170.XX.XX
...
Name: foobar
Public IP: 178.170.XX.XX

$ knife cs server list
Name Public IP Service Template State Instance Hypervisor
foobar 178.170.XX.XX m1.small CentOS 6.4 Running N/A N/A

5.11. Bootstrapping Instances with Hosted Chef
Problem
You want to use Knife with Hosted Chef

Solution
Knife lives up to its full potential when used to bootstrap Chef and use it for configu‐
ration management of the instances. The easiest way to get started with Chef is to use
Hosted Chef. There is some great documentation on how to do it. The basic concept is
that you will download or create cookbooks locally and publish them to your own hosted
Chef server.

Discussion
With your hosted Chef account created and your local chef-repo setup, you can start
instances on your Cloud and specify the cookbooks to use to configure those instances.
The bootstrapping process will fetch those cookbooks and configure the node. Here is
an example that does so using the exoscale cloud, which runs on CloudStack. This cloud
is enabled as a basic zone and uses SSH key pairs and security groups for access:

$ knife cs server create --service Tiny --template "Linux CentOS 6.4 64-bit"
 --ssh-user root --identity ~/.ssh/id_rsa --run-list "recipe[apache2]"
 --ssh-keypair foobar --security-group www --no-public-ip foobar

Waiting for Server to be created....
Name: foobar

5.11. Bootstrapping Instances with Hosted Chef | 105

http://bit.ly/Knife_CloudStack
http://bit.ly/Knife_CloudStack
http://www.ikoula.com
https://manage.opscode.com/signup
http://learn.getchef.com/legacy/get-started/
http://www.exoscale.ch

Public IP: 185.19.XX.XX

Waiting for sshd.....

Name: foobar13
Public IP: 185.19.XX.XX
Environment: _default
Run List: recipe[apache2]

Bootstrapping Chef on 185.19.XX.XX
185.19.XX.XX --2013-06-10 11:47:54-- http://opscode.com/chef/install.sh
185.19.XX.XX Resolving opscode.com...
185.19.XX.XX 184.ZZ.YY.YY
185.19.XX.XX Connecting to opscode.com|184.ZZ.XX.XX|:80...
185.19.XX.XX connected.
185.19.XX.XX HTTP request sent, awaiting response...
185.19.XX.XX 301 Moved Permanently
185.19.XX.XX Location: http://www.opscode.com/chef/install.sh [following]
185.19.XX.XX --2013-06-10 11:47:55-- http://www.opscode.com/chef/install.sh
185.19.XX.XX Resolving www.opscode.com...
185.19.XX.XX 184.ZZ.YY.YY
185.19.XX.XX Reusing existing connection to opscode.com:80.
185.19.XX.XX HTTP request sent, awaiting response...
185.19.XX.XX 200 OK
185.19.XX.XX Length: 6509 (6.4K) [application/x-sh]
185.19.XX.XX Saving to: “STDOUT”
185.19.XX.XX
 0% [] 0 --.-K/s
100%[======================================>] 6,509 --.-K/s in 0.1s
185.19.XX.XX
185.19.XX.XX 2013-06-10 11:47:55 (60.8 KB/s) - written to stdout [6509/6509]
185.19.XX.XX
185.19.XX.XX Downloading Chef 11.4.4 for el...
185.19.XX.XX Installing Chef 11.4.4

Chef will then configure the machine based on the cookbook passed in the --run-
list option; here I set up a simple web server. Note the key pair that I used and the
security group. I also specify --no-public-ip, which disables the IP address allocation
and association. This is specific to the setup of exoscale, which automatically uses a
public IP address for the instances.

106 | Chapter 5: Configuration Management

The latest version of knife-cloudstack allows you to manage key
pairs and security groups. For example, listing, creating, and delet‐
ing of key pairs is possible, as well as listing of security groups:

$ knife cs securitygroup list
Name Description Account
default Default Security Group runseb@gmail.com
www apache server runseb@gmail.com
$ knife cs keypair list
Name Fingerprint
exoscale xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx

When using a CloudStack-based cloud in an advanced zone setting, Knife can auto‐
matically allocate and associate an IP address. To illustrate this slightly different example,
I use iKoula, a French cloud provider that uses CloudStack. I edit my knife.rb file to set
up a different endpoint and the different API and secret keys. I remove the key pair,
security group, and public IP option, and I do not specify an identity file, as I will retrieve
the SSH password with the --cloudstack-password option. The example is as follows:

$ knife cs server create --service m1.small
 --template "CentOS 6.4 - Minimal - 64bits"
 --ssh-user root --cloudstack-password --run-list "recipe[apache2]" foobar

Waiting for Server to be created........
Allocate ip address, create forwarding rules
params: {"command"=>"associateIpAddress",
 "zoneId"=>"a41b82a0-78d8-4a8f-bb79-303a791bb8a7",
 "networkId"=>"df2288bb-26d7-4b2f-bf41-e0fae1c6d198"}.
Allocated IP Address: 178.170.71.148
...
Name: foobar
Password: $%@#$%#$%#$
Public IP: 178.xx.yy.zz

Waiting for sshd......

Name: foobar
Public IP: 178.xx.yy.zz
Environment: _default
Run List: recipe[apache2]

Bootstrapping Chef on 178.xx.yy.zz
178.xx.yy.zz --2013-06-10 13:24:29-- http://opscode.com/chef/install.sh
178.xx.yy.zz Resolving opscode.com...

You will want to review the security implications of doing the boot‐
strap as root and using the default password to do so.

5.11. Bootstrapping Instances with Hosted Chef | 107

http://www.ikoula.com

In advanced zone, your cloud provider may also have decided to block all egress traffic
to the public Internet, which means that contacting the hosted Chef server would fail.
To configure the egress rules properly, CloudMonkey can be used. List the networks to
find the ID of your guest network, then create an egress firewall rule. Review the Cloud‐
Monkey recipe (Recipe 3.3) to find the proper API calls and their arguments:

> list networks filter=id,name,netmask
count = 1
network:
+--------------------------------------+------+---------------+
| id | name | netmask |
+--------------------------------------+------+---------------+
| df2288bb-26d7-4b2f-bf41-e0fae1c6d198 | test | 255.255.255.0 |
+--------------------------------------+------+---------------+

> create egressfirewallrule networkid=df2288bb-26d7-4b2f-bf41-e0fae1c6d198
 startport=80 endport=80 protocol=TCP cidrlist=10.1.1.0/24
id = b775f1cb-a0b3-4977-90b0-643b01198367
jobid = 8a5b735c-6aab-45f8-b687-0a1150a66e0f

> list egressfirewallrules filter=networkid,startport,endport,cidrlist,protocol
count = 1
firewallrule:
+-----------+---------+-------------+--------+----------+
| startport | endport | cidrlist | state | protocol |
+-----------+---------+-------------+--------+----------+
| 80 | 80 | 10.1.1.0/24 | Active | tcp |
+-----------+---------+-------------+--------+----------+

108 | Chapter 5: Configuration Management

CHAPTER 6

Advanced Recipes

In this final chapter, we cover some advanced tools and use cases focused on application
deployments and enhancement to your cloud infrastructure. Fluent is a log aggregation
framework that you can use in your monitoring environment to store and analyze your
logs. In combination with MongoDB or Elasticsearch, it is a very powerful tool. RiakCS
is a scalable distributed object store created by Basho and provides an S3-compatible
API. Together with a tool like EC2Stack, it can help you build an EC2/S3 clone. Apache
Whirr is an automation tool to create clusters of virtual machines that form complete
distributed systems, and in theses recipes, we’ll use Whirr to provision a Hadoop cluster.
This final chapter rounds up the ecosystem, going from installation, clients, wrappers,
configuration management, and software development tools to application deployment,
monitoring, and high lever services to your cloud.

6.1. Installing Fluentd to Collect CloudStack Logs and
Events
Fluentd is an open source software to collect events and logs in JSON format. It has
hundreds of plug-ins that allow you to store the logs/events in your favorite data store
like AWS S3, MongoDB, and even Elasticsearch. It is an equivalent to logstash. The
source is available on GitHub, but can also be installed via your favorite package man‐
ager (e.g., brew, yum, apt, gem). A CloudStack plug-in listens to CloudStack events and
stores these events in a chosen storage backend. In this chapter, we will show how to
store CloudStack logs in Elasticsearch using Fluent. Note that the same thing can be
done with logstash. The documentation is quite straightforward, but here are the basic
steps.

Problem
You want to use Fluent to aggregate logs from various systems in your data center.

109

http://fluentd.org
http://logstash.net
https://github.com/fluent/fluentd
http://docs.fluentd.org/articles/quickstart

Solution
Install a Fluent Ruby gem, generate a configuration file, and start the fluentd plug-in.

Discussion
You will need a working fluentd installed on your machine. Pick your package manager
of choice and install fluentd. For instance, with gem we would do:

$ sudo gem install fluentd

fluentd will now be in your path. You need to create a configuration file and start
fluentd using this config. For additional options with fluentd, just enter fluentd -h.
The -s option will create a sample configuration file in the working directory. The -c
option will start fluentd using the specific configuration file. You can then send a test
log/event message to the running process with fluent-cat:

$ fluentd -s conf
$ fluentd -c conf/fluent.conf &
$ echo '{"json":"message"}' | fluent-cat debug.test

6.2. Configuring the CloudStack Fluentd Plug-In
Problem
CloudStack has a listEvents API that does exactly what its name suggests: it lists events
happening within a CloudStack deployment. For example, it can list events such as the
start and stop of a virtual machine, creation of security groups, life cycle events of storage
elements, snapshots, and more.

Solution
The listEvents API is well documented. Based mostly on this API and the Fog Ruby
library, a CloudStack plug-in for fluentd was written by Yuichi UEMURA. It is slightly
different from using logstash, as with logstash you can format the log4j logs of the
CloudStack management server and directly collect those. Here we rely on the listE
vents API.

Discussion
You can install the plug-in from source via GitHub:

$ git clone https://github.com/u-ichi/fluent-plugin-cloudstack

Then build your own gem and install it with the following:

110 | Chapter 6: Advanced Recipes

http://bit.ly/listEvents_API
http://fog.io
https://github.com/u-ichi

$ sudo gem build fluent-plugin-cloudstack.gemspec
$ sudo gem install fluent-plugin-cloudstack-0.0.8.gem

Or install the gem directly:

$ sudo gem install fluent-plugin-cloudstack

You will need to generate a configuration file with fluentd -s conf. You can specify
the path to your configuration file. Edit the configuraton to define a source as being
from your CloudStack host. For instance, if you are running a development environ‐
ment locally:

<source>
 type cloudstack
 host localhost
 apikey $cloudstack_apikey
 secretkey $cloustack_secretkey

 # optional
 protocol http # https or http, default https
 path /client/api # default /client/api
 port 8080 # default 443
 interval 300 # min 300, default 300
 ssl false # true or false, default true
 domain_id $cloudstack_domain_id
 tag cloudstack
</source>

You also want to define the tag explicitly as being cloudstack. You can then create a
<match> section in the configuration file. To keep it simple at first, we will echo the
events to stdout. Just add the following:

<match cloudstack.**>
 type stdout
</match>

Run fluentd with fluentd -c conf/fluent.conf &, browse the CloudStack UI, create
a VM, and create a service offering. Once the interval is passed, you will see the events
being written to stdout:

2013-11-05 12:19:26 +0100 [info]: starting fluentd-0.10.39
2013-11-05 12:19:26 +0100 [info]: reading config file path="conf/fluent.conf"
2013-11-05 12:19:26 +0100 [info]: using configuration file: <ROOT>
 <source>
 type forward
 </source>
 <source>
 type cloudstack
 host localhost
 apikey 6QN8jOzEfhR7Fua69vk5ocDo_tfg8qqkT7-
 secretkey HZiu9vhPAxA8xi8jpGWMWb9q9f5OL1ojW4
 protocol http
 path /client/api

6.2. Configuring the CloudStack Fluentd Plug-In | 111

 port 8080
 interval 3
 ssl false
 domain_id a9e4b8f0-3fd5-11e3-9df7-78ca8b5a2197
 tag cloudstack
 </source>
 <match debug.**>
 type stdout
 </match>
 <match cloudstack.**>
 type stdout
 </match>
</ROOT>
2013-11-05 12:19:26 +0100 [info]: adding source type="forward"
2013-11-05 12:19:26 +0100 [info]: adding source type="cloudstack"
2013-11-05 12:19:27 +0100 [info]: adding match pattern="debug.**" type="stdout"
2013-11-05 12:19:27 +0100 [info]: adding match pattern="cloudstack.**"
 type="stdout"
2013-11-05 12:19:27 +0100 [info]: listening fluent socket on 0.0.0.0:24224
2013-11-05 12:19:27 +0100 [info]: listening cloudstack api on localhost
2013-11-05 12:19:30 +0100 cloudstack.usages: {"events_flow":0}
2013-11-05 12:19:30 +0100 cloudstack.usages:
{"vm_sum":1,"memory_sum":536870912,"cpu_sum":1,"root_volume_sum":1400,
 "data_volume_sum":0,"Small Instance":1}
2013-11-05 12:19:33 +0100 cloudstack.usages: {"events_flow":0}
2013-11-05 12:19:33 +0100 cloudstack.usages:
{"vm_sum":1,"memory_sum":536870912,"cpu_sum":1,"root_volume_sum":1400,
 "data_volume_sum":0,"Small Instance":1}
2013-11-05 12:19:36 +0100 cloudstack.usages: {"events_flow":0}
2013-11-05 12:19:36 +0100 cloudstack.usages:
{"vm_sum":1,"memory_sum":536870912,"cpu_sum":1,"root_volume_sum":1400,
 "data_volume_sum":0,"Small Instance":1}
2013-11-05 12:19:39 +0100 cloudstack.usages: {"events_flow":0}
...

I cut some of the output for brevity. Note that I do have an interval listed as 3 because
I did not want to wait 300 minutes. Therefore, I installed from source and patched the
plug-in; it should be fixed in the source soon. You might have a different endpoint and
of course different keys, and don’t worry about me sharing that secret_key (I am using
a simulator, and that key is already gone).

6.3. Using MongoDB as a Fluent Data Store
Problem
Getting the events and usage information on stdout is interesting, but the most inter‐
esting part comes when you want to store the data in a database or a search index.

112 | Chapter 6: Advanced Recipes

Solution
Use the MongoDB NoSQL document store, to keep an archive of CloudStack events
aggregated by Fluent. Perform queries on your CloudStack logs using MongoDB.

Discussion
MongoDB is an open source document database that is schemaless and stores docu‐
ments in JSON format (BSON actually). Installation and query syntax of MongoDB is
beyond the scope of this chapter. MongoDB clusters can be set up with replication and
sharding. In this recipe, we use MongoDB on a single host with no sharding or repli‐
cation. To use MongoDB as a storage backend for the events, we first need to install
MongoDB. On a single OS X node, this is as simple as sudo port install mongodb.
For other operating systems, use the appropriate package manager. You can then start
MongoDB with sudo mongod --dbpath=/path/to/your/databases. Create a flu
entd database and a fluentd user with read/write access to it. In the Mongo shell do
the following:

$ sudo mongo
>use fluentd
>db.AddUser({user:"fluentd", pwd: "foobar", roles: ["readWrite", "dbAdmin"]})

We then need to install the fluent-plugin-mongodb. Still using gem, this will be done
like so:

$ sudo gem install fluent-plugin-mongo

The complete documentation also explains how to modify the configuration of flu
entd to use this backend. Previously, we used stdout as the output backend. To use
MongoDB, we just need to write a different <match> section like so:

Single MongoDB
<match cloudstack.**>
 type mongo
 host fluentd
 port 27017
 database fluentd
 collection test

 # for capped collection
 capped
 capped_size 1024m

 # authentication
 user fluentd
 password foobar

 # flush
 flush_interval 10s
</match>

6.3. Using MongoDB as a Fluent Data Store | 113

http://www.mongodb.org
http://docs.fluentd.org/articles/out_mongo

Note that you cannot have multiple match sections for the same tag pattern.

To view the events/usages in Mongo, simply start a Mongo shell with mongo -u fluentd
-p foobar fluentd and list the collections. You will see the test collection:

$ mongo -u fluentd -p foobar fluentd
MongoDB shell version: 2.4.7
connecting to: fluentd
Server has startup warnings:
Fri Nov 1 13:11:44.855 [initandlisten]
Fri Nov 1 13:11:44.855 [initandlisten]
** WARNING: soft rlimits too low. Number of files is 256, should be at least 1000
> show collections
system.indexes
system.users
test

The db.getCollection, count(), and findOne() MongoDB commands will get you
rolling:

> coll=db.getCollection('test')
fluentd.test
> coll.count()
181
> coll.findOne()
{
 "_id" : ObjectId("5278d9822675c98317000001"),
 "events_flow" : 4,
 "time" : ISODate("2013-11-05T11:41:47Z")
}

We leave it to you to learn the MongoDB query syntax and the great aggregation frame‐
work. Have fun!

Fluent has other data store plug-ins, including an Elasticsearch plug-
in that can be very interesting.

6.4. Playing with Basho Riak CS Object Store
CloudStack deals with the compute side of an IaaS cloud by providing management
functionalities for virtual machine provisioning. The storage side of a cloud—which
often consists of a scalable, fault tolerant object store—is implemented with other soft‐
ware. Ceph and RiakCS from Basho are the two of the most talked about object stores
these days. In this post, we look at RiakCS and take it for a quick tour. CloudStack
integrates with RiakCS for secondary storage, and together they can offer an EC2 and
a true S3 interface, backed by a scalable object store.

114 | Chapter 6: Advanced Recipes

http://www.elasticsearch.com
http://ceph.com/ceph-storage/
http://basho.com/riak-cloud-storage/
http://basho.com

While RiakCS (cloud storage) can be seen as an S3 backend implementation, it is based
on Riak. Riak is a highly available distributed NoSQL database. The use of a consistent
hashing algorithm allows Riak to rebalance the data when nodes disappear (e.g., fail)
and when nodes appear (e.g., increased capacity); it also allows you to manage replica‐
tion of data with an eventual consistency principle typical of large-scale distributed
storage systems, which favor availability over consistency.

Problem
You want to use a distributed, scalable object store to act as a storage backend to your
image catalog. You want to use RiakCS and get familiar with it on your local machine.

Solution
To get a functioning RiakCS storage, we need Riak, RiakCS, and Stanchion. Stanchion
is an interface that serializes HTTP requests made to RiakCS. All three systems can be
installed from binaries.

Discussion
To get started, let’s play with Riak and build a cluster on our local machine. Basho has
some great documentation; the toughest thing will be to install Erlang (and by tough I
mean a two-minutes deal), but again the docs are very helpful and give step-by-step
instructions for almost all operating systems.

There is no need for me to recreate step-by-step instructions, as the docs are so great,
but the gist is that with the quick start guide, we can create a Riak cluster on local
host. We are going to start five Riak nodes (e.g., we could start more) and join them
into a cluster. This is as simple as:

bin/riak start
bin/riak-admin cluster join dev1@127.0.0.1

Where dev1 was the first Riak node started. Creating this cluster will rebalance the ring:

================================= Membership ==================================
Status Ring Pending Node
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
valid     100.0%     20.3%    'dev1@127.0.0.1'
valid       0.0%     20.3%    'dev2@127.0.0.1'
valid       0.0%     20.3%    'dev3@127.0.0.1'
valid       0.0%     20.3%    'dev4@127.0.0.1'
valid       0.0%     18.8%    'dev5@127.0.0.1'
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The riak-admin command is a nice CLI to manage the cluster. We can check the mem‐
bership of the cluster we just created, and after some time, the ring will have rebalanced
to the expected state:

6.4. Playing with Basho Riak CS Object Store | 115

http://basho.com/riak-cloud-storage/
http://bit.ly/why_Riak
http://bit.ly/5-minute_install
http://bit.ly/Erlang_install
http://bit.ly/riak-admin_CLI

dev1/bin/riak-admin member-status
================================= Membership ==================================
Status Ring Pending Node
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
valid      62.5%     20.3%    'dev1@127.0.0.1'
valid       9.4%     20.3%    'dev2@127.0.0.1'
valid       9.4%     20.3%    'dev3@127.0.0.1'
valid       9.4%     20.3%    'dev4@127.0.0.1'
valid       9.4%     18.8%    'dev5@127.0.0.1'
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Valid:5 / Leaving:0 / Exiting:0 / Joining:0 / Down:0

dev1/bin/riak-admin member-status
================================= Membership ==================================
Status Ring Pending Node
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
valid      20.3%      --      'dev1@127.0.0.1'
valid      20.3%      --      'dev2@127.0.0.1'
valid      20.3%      --      'dev3@127.0.0.1'
valid      20.3%      --      'dev4@127.0.0.1'
valid      18.8%      --      'dev5@127.0.0.1'
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can then test your cluster by putting an image as explained in the docs and retrieving
it in a browser (e.g., an HTTP GET):

$ curl -XPUT http://127.0.0.1:10018/riak/images/1.jpg \
 -H "Content-type: image/jpeg" \
 --data-binary @image_name_.jpg

Open the browser to http://127.0.0.1:10018/riak/images/1.jpg.

As easy as 1, 2, 3!

6.5. Installing RiakCS on Ubuntu 12.04
Problem
To move forward and build a complete S3-compatible object store, you can set up ev‐
erything on an Ubuntu 12.04 machine. You will need more than one node to really take
advantage of the distributed nature of Riak, but starting with one node will put you well
on your way.

Solution
Set up the basho package repository and use the package manager to grab the riak,
riak_cs, and stanchion binaries. Then edit the configuration files and check that you can
store an object in RiakCS.

116 | Chapter 6: Advanced Recipes

Discussion
To get started, you need to set up the basho package repository on your machine. Get
the repo keys and set up a basho.list repository:

curl http://apt.basho.com/gpg/basho.apt.key | sudo apt-key add -
bash -c "echo deb http://apt.basho.com $(lsb_release -sc) main \
 > /etc/apt/sources.list.d/basho.list"
apt-get update

Install the riak, riak-cs, and stanchion packages.

apt-get install riak riak-cs stanchion

Check that the binaries are in your path with which riak, which riak-cs, and which
stanchion; you should find everything in /usr/sbin. All configuration will be in /etc/
riak, /etc/riak-cs, and /etc/stanchion. Make sure to inspect app.config, which we are going
to modify before starting everything.

Note that all binaries have a nice usage description, which includes a console, a ping
method, and a restart, among others:

Usage: riak {start | stop| restart | reboot | ping | console | attach |
 attach-direct | ertspath | chkconfig | escript | version |
 getpid | top [-interval N] [-sort reductions|memory|msg_q]
 [-lines N] }

Before starting anything, we are going to configure every component, which means
editing the app.config files in each respective etc directory. For riak-cs, I only made
sure to set {anonymous_user_creation, true}; I did nothing for configuring stan
chion, as I used the default ports and ran everything on localhost without ssl. Just
make sure that you are not running any other application on port 8080 as riak-cs will
use this port by default. For configuring riak, see the documentation, which sets a
different backend than what we used in the testing phase. With all these configuration
steps complete, you should be able to start all three components:

riak start
riak-cs start
stanchion start

You can ping every component and check the console with riak ping, riak-cs ping,
and stanchion ping.

Create an admin user for riak-cs:

curl -H 'Content-Type: application/json' \
 -X POST http://localhost:8080/riak-cs/user \
 --data '{"email":"foobar@example.com", "name":"admin user"}'

If this returns successfully, it is a good indication that your setup is working properly.
In the response, we recognized API and secret keys:

6.5. Installing RiakCS on Ubuntu 12.04 | 117

http://bit.ly/configure_Riak

{"email":"foobar@example.com",
"display_name":"foobar",
"name":"admin user",
"key_id":"KVTTBDQSQ1-DY83YQYID",
"key_secret":"2mNGCBRoqjab1guiI3rtQmV3j2NNVFyXdUAR3A==",
"id":"1f8c3a88c1b58d4b4369c1bd155c9cb895589d24a5674be789f02d3b94b22e7c",
"status":"enabled"}

Let’s take those and put them in our riak-cs configuration file; there are admin_key
and admin_secret variables to set. Then restart with riak-cs restart. Don’t forget to
also add those in the stanchion configuration file /etc/stanchion/app.config and restart
it stanchion restart.

At this stage, you have a fully functioning RiakCS cluster (one node only), with an
administrative user created. You can use the administrator keys to create another user.

6.6. Using Python Boto to Store Data in RiakCS
Problem
RiakCS exposes an S3-compatible API and you want to use an S3 client to store and
manage objects in RiakCS.

Solution
Use the Python Boto module (Recipe 4.4) to write a Python script that will manage
buckets and set some objects in those buckets.

Discussion
Riak-CS is an S3-compatible cloud storage solution, so we should be able to use an S3
client like Python Boto to create buckets and store data. Let’s try. You will need Boto of
course; apt-get install python-boto and then open an interactive shell python.

Import the modules and create a connection to riak-cs:

>>> from boto.s3.key import Key
>>> from boto.s3.connection import S3Connection
>>> from boto.s3.connection import OrdinaryCallingFormat
>>> apikey='KVTTBDQSQ1-DY83YQYID'
>>> secretkey='2mNGCBRoqjab1guiI3rtQmV3j2NNVFyXdUAR3A=='
>>> cf=OrdinaryCallingFormat()
>>> conn=S3Connection(aws_access_key_id=apikey,aws_secret_access_key=secretkey, \
...is_secure=False,host='localhost',port=8080,
...calling_format=cf)

Now you can list the bucket, which will be empty at first. Then create a bucket and store
content in it with various keys:

118 | Chapter 6: Advanced Recipes

http://bit.ly/S3-compatible_API
http://bit.ly/Boto_docs

>>> conn.get_all_buckets()
[]
>>> bucket=conn.create_bucket('riakbucket')
>>> k=Key(bucket)
>>> k.key='firstkey'
>>> k.set_contents_from_string('Object from first key')
>>> k.key='secondkey'
>>> k.set_contents_from_string('Object from second key')
>>> b=conn.get_all_buckets()[0]
>>> b.get_all_keys()
[<Key: riakbucket,firstkey>, <Key: riakbucket,secondkey>]
>>> k=Key(b)
>>> k.key='secondkey'
>>> k.get_contents_as_string()
'Object from second key'
>>> k.key='firstkey'
>>> k.get_contents_as_string()
'Object from first key'

If you want a riakCS Boto shell, the following script will be very handy:

#!/usr/bin/env python

from boto.s3.key import Key
from boto.s3.connection import S3Connection
from boto.s3.connection import OrdinaryCallingFormat

from IPython.terminal.embed import InteractiveShellEmbed

apikey='C9JEFXWZ5RUFS9U2YZRX'
secretkey='DZ_6jtGC8Any-08YWiKN2vNKPkNxQDmU9rODig=='
cf=OrdinaryCallingFormat()
conn=S3Connection(aws_access_key_id=apikey,aws_secret_access_key=secretkey,
 is_secure=False,host='localhost',port=8081,calling_format=cf)

ipshell = InteractiveShellEmbed(banner1="Hello, Riak Shell!")
ipshell()

And that’s it, an S3-compatible object store backed by a NoSQL distributed database
that uses consistent hashing, all of it in Erlang. Pretty sweet. Connect it to your Cloud‐
Stack EC2-compatible cloud, use it as secondary storage to hold templates, or make it
a public facing offering, and you have the second leg of the cloud: a scalable object store.

6.7. Using RiakCS as Secondary Storage for CloudStack
Problem
You have used an NFS storage system as CloudStack secondary storage. Now that you
have set up a RiakCS cluster, you want to use it to replace your NFS system.

6.7. Using RiakCS as Secondary Storage for CloudStack | 119

Solution
Create a CloudStack user in your RiakCS cluster, create a cloudstack bucket that this
user can read from and write to. Then use the updateCloudToUseObjectStore API to
migrate from NFS to S3-based secondary storage. Alternatively, if you have not set up
an NFS secondary storage yet, you can use the addImageStore API to create it with
RiakCS.

Discussion
The following steps will migrate from an NFS store secondary storage to an object store.

1. Install and configure a RiakCS cluster per the normal process (Recipe 6.5).
2. Create an access/secret key for a CloudStack user.
3. Configure S3 secondary storage per the CloudStack documentation using the access

key and secret key of the RiakCS CloudStack user.

Account management in RiakCS is well described. However, to create a user, the s3curl
utility is extremely handy. It will create the proper signature and generate the authen‐
ticated request to your S3 endpoint.

Download s3curl and edit this Perl script to change the endpoint to your RiakCS end‐
point. For example, if you run it on localhost, edit s3curl to define an endpoint like so:

begin customizing here
my @endpoints = ('localhost',);

s3curl itself has some good usage info, but the RiakCS documentation is also very
useful.

Using the key_id and the key_secret that you generated in Recipe 6.5, you can list the
users:

$./s3curl.pl --id C9JEFXWZ5RUFS9U2YZRX \
 --key DZ_6jtGC8Any-08YWiKN2vNKPkNxQDmU9rODig== \
 http://localhost:8081/riak-cs/users

To create a user, you will need to send some JSON data that contains the name and email
of the user (the response will contain the keys of the new user):

$./s3curl.pl --id C9JEFXWZ5RUFS9U2YZRX \
 --key DZ_6jtGC8Any-08YWiKN2vNKPkNxQDmU9rODig== \
 --post --contentType application/json -- -s -v -x localhost:8081 \
 --data '{"email":"foobar@example.com","name":"foo bar"}' \
 http://localhost:8081/riak-cs/user

In order to avoid putting the secret key on the command line, create a ~/.s3curl con‐
figuration file with content similar to the following:

120 | Chapter 6: Advanced Recipes

http://bit.ly/account_management
http://bit.ly/s3curl_utility
http://bit.ly/s3curl_utility
http://bit.ly/using_s3curl

%awsSecretAccessKeys = (
 # personal account
 admin => {
 id => 'C9JEFXWZ5RUFS9U2YZRX',
 key => 'DZ_6jtGC8Any-08YWiKN2vNKPkNxQDmU9rODig==',
 },
);

Make the file chmod 600, and then the request is simplified.

$./s3curl.pl --id admin http://localhost:8081/riak-cs/users

Note the admin ID being used, instead of the key_id of the administrator user. This new
user will be used for CloudStack usage. If you installed CloudStack with NFS-based
secondary storage (Recipe 2.3), then use the updatecloudToUseObjectStore API to
migrate from NFS to your RiakCS-based S3 object store.

Using CloudMonkey, you can make this API call easily:

> update cloudtouseobjectstore url=http://localhost:8081/riak-cs
 name=riakcs
 provider=S3
 details[0].key=accesskey
 details[0].value=STU6Z-ZMK1TPMDAXL9I1
 details[1].key=secretkey
 details[1].value=8OuY3mHDXihu0Tdb2aVJ4vuYZLBAl5Z7NiWKsg==
imagestore:
name = riakcs
id = 6793abce-bebf-4de3-ac9e-7c3a23e3db3d
details:
+-----------+--+
| name | value |
+-----------+--+
| secretkey | ecJlaZebrYKj_qYaIfzlRR_1izojGVWjBRFx0Q== |
| accesskey | ZMJD6-90S2MST4NZMK1Z |
+-----------+--+
protocol = http
providername = S3
scope = REGION
url = http://localhost:8081/riak-cs

The provider specified is an uppercase S3; it is case sensitive.

If you want to add an object store in a zone that does not have any existing secondary
storage, you could use the addImageStore API like so:

> add imagestore
 name=riakcs

6.7. Using RiakCS as Secondary Storage for CloudStack | 121

http://bit.ly/updateCloudtoUseObjectStore

 provider=S3
 url=http://localhost:8081/riak-cs
 details[0].key=accesskey
 details[0].value=ZMJD6-90S2MST4NZMK1Z
 details[1].key=secretkey
 details[1].value=ecJlaZebrYKj_qYaIfzlRR_1izojGVWjBRFx0Q==
imagestore:
name = riakcs
id = 1a60d62a-c1e9-4d1c-8b35-d5cd687f6de4
details:
+-----------+--+
| name | value |
+-----------+--+
| secretkey | ecJlaZebrYKj_qYaIfzlRR_1izojGVWjBRFx0Q== |
| accesskey | ZMJD6-90S2MST4NZMK1Z |
+-----------+--+
protocol = http
providername = S3
scope = REGION
url = http://localhost:8081/riak-cs

This small recipe should put you on your way to using RiakCS with CloudStack.

6.8. Installing Apache Whirr
Apache Whirr is a set of libraries to run cloud services, internally it uses jclouds, which
we introduced earlier via the jclouds-cli interface to CloudStack. It is Java based and
of interest to provision clusters of virtual machines on cloud providers. Historically it
started as a set of scripts to deploy Hadoop clusters on Amazon EC2. The following
recipes introduce Whirr as a potential CloudStack tool to provision Hadoop clusters
on CloudStack-based clouds.

Problem
You want to deploy groups of virtual machines that make up a distributed system.
Apache Whirr can be used to orchestrate these types of multiple machine deployments.

Solution
Clone the Apache Whirr Git repository and build it using Maven.

Discussion
To install Whirr, you can follow the Quick Start Guide, download a tarball, or clone the
Git repository. In the spirit of this document, we clone the repo:

$ git clone git://git.apache.org/whirr.git

And build the source with Maven, which we now know and love:

122 | Chapter 6: Advanced Recipes

http://whirr.apache.org
http://jclouds.incubator.apache.org
http://hadoop.apache.org
http://bit.ly/Whirr_quick-start

$ mvn install

The Whirr binary will be available in the bin directory that we can add to our path:

$ export PATH=$PATH:/Users/sebgoa/Documents/whirr/bin

If all goes well, you should now be able to get the usage of whirr:

$ whirr --help
Unrecognized command '--help'

Usage: whirr COMMAND [ARGS]
where COMMAND may be one of:

 launch-cluster Launch a new cluster running a service.
 start-services Start the cluster services.
 stop-services Stop the cluster services.
restart-services Restart the cluster services.
 destroy-cluster Terminate and cleanup resources for a running cluster.
destroy-instance Terminate and cleanup resources for a single instance.
 list-cluster List the nodes in a cluster.
 list-providers Show a list of the supported providers
 run-script Run a script on a specific instance or
 a group of instances matching a role name
 version Print the version number and exit.
 help Show help about an action

Available roles for instances:
 cassandra
 elasticsearch
 ganglia-metad
 ganglia-monitor
 hadoop-datanode
 ...

From the look of the usage, you clearly see that Whirr is about more than just Hadoop
and that it can be used to configure Elasticsearch clusters and Cassandra databases, as
well as the entire Hadoop ecosystem with Mahout, Pig, HBase, Hama, MapReduce,
and YARN.

6.9. Using Apache Whirr to Deploy a Hadoop Cluster
Problem
With Whirr installed, you want to configure it so that it can use your CloudStack end‐
point to provision virtual machines and deploy a Hadoop cluster.

6.9. Using Apache Whirr to Deploy a Hadoop Cluster | 123

http://hadoop.apache.org

Solution
Configure Whirr with your CloudStack endpoint and your API keys. Write a properties
file that defines the characteristics of the Hadoop cluster you want to start. Your prop‐
erties file will define the distrubtion of Hadoop you want to use, the number of nodes,
the operating system, the instance types, and so on.

Discussion
To get started with Whirr, you need to set up the credentials and endpoint of the
CloudStack-based cloud that you will be using. Edit the ~/.whirr/credentials file to in‐
clude a PROVIDER, IDENTITY, CREDENTIAL, and ENDPOINT. The PROVIDER needs to be set
to cloudstack, the IDENTITY is your API key, the CREDENTIAL is your secret key and the
ENDPOINT is the endpoint URL. For instance:

PROVIDER=cloudstack
IDENTITY=mnH5EbKc4534592347523486724389673248AZW4kYV5gdsfgdfsgdsfg8...
CREDENTIAL=Hv97W58iby5PWL1ylC4oJls46456435634564537sdfgdfhrteydfg87s...
ENDPOINT=https://api.exoscale.ch/compute

With the credentials and endpoint defined, you can create a properties file that describes
the cluster you want to launch on your cloud. The file contains information such as the
cluster name, the number of instances and their type, the distribution of Hadoop you
want to use, the service offering ID, and the template ID of the instances. It also defines
the SSH keys to be used for accessing the virtual machines. In the case of a cloud that
uses security groups, you may also need to specify it. A tricky point is the handling of
DNS name resolution. You might have to use the whirr.store-cluster-in-etc-
hosts key to bypass any DNS issues. For a full description of the Whirr property keys,
see the documentation.

To use the Cloudera Hadoop distribution (CDH) like in the preceding
example, you will need to copy the services/cdh/src/main/resources/
functions directory to the root of your Whirr source. In this directo‐
ry, you will find the bash scripts used to bootstrap the instances. It
may be handy to edit those scripts.

$ more whirr.properties

#
Setup an Apache Hadoop Cluster
#

Change the cluster name here
whirr.cluster-name=hadoop

whirr.store-cluster-in-etc-hosts=true

124 | Chapter 6: Advanced Recipes

http://bit.ly/Whirr_config

whirr.use-cloudstack-security-group=true

Change the name of cluster admin user
whirr.cluster-user=${sys:user.name}

Change the number of machines in the cluster here
whirr.instance-templates=1 hadoop-namenode+hadoop-jobtracker,
 3 hadoop-datanode+hadoop-tasktracker

Uncomment out the following two lines to run CDH
whirr.env.repo=cdh4
whirr.hadoop.install-function=install_cdh_hadoop
whirr.hadoop.configure-function=configure_cdh_hadoop

whirr.hardware-id=b6cd1ff5-3a2f-4e9d-a4d1-8988c1191fe8

whirr.private-key-file=/path/to/ssh/key/
whirr.public-key-file=/path/to/ssh/public/key/

whirr.provider=cloudstack
whirr.endpoint=https://the/endpoint/url
whirr.image-id=1d16c78d-268f-47d0-be0c-b80d31e765d2

The preceding example is specific to a CloudStack cloud set up as a
basic zone. This cloud uses security groups for isolation between
instances. The proper rules had to be setup by hand. Also note the
use of whirr.store-cluster-in-etc-hosts. If set to true, Whirr
will edit the /etc/hosts file of the nodes and enter the IP adresses. This
is handy in the case where DNS resolution is problematic.

You are now ready to launch a Hadoop cluster:

$ whirr launch-cluster --config hadoop.properties
Running on provider cloudstack using identity mnH5EbKcKeJd4564...
Bootstrapping cluster
Configuring template for bootstrap-hadoop-datanode_hadoop-tasktracker
Configuring template for bootstrap-hadoop-namenode_hadoop-jobtracker
Starting 3 node(s) with roles [hadoop-datanode, hadoop-tasktracker]
Starting 1 node(s) with roles [hadoop-namenode, hadoop-jobtracker]
>> running InitScript{INSTANCE_NAME=bootstrap-hadoop-datanode_hadoop...
>> running InitScript{INSTANCE_NAME=bootstrap-hadoop-datanode_hadoop...
>> running InitScript{INSTANCE_NAME=bootstrap-hadoop-datanode_hadoop...
>> running InitScript{INSTANCE_NAME=bootstrap-hadoop-namenode_hadoop...
<< success executing InitScript{INSTANCE_NAME=bootstrap-hadoop-datanode_...
Get:1 http://security.ubuntu.com precise-security Release.gpg [198 B]
Get:2 http://security.ubuntu.com precise-security Release [49.6 kB]
Hit http://ch.archive.ubuntu.com precise Release.gpg
Get:3 http://ch.archive.ubuntu.com precise-updates Release.gpg [198 B]
Get:4 http://ch.archive.ubuntu.com precise-backports Release.gpg [198 B]

6.9. Using Apache Whirr to Deploy a Hadoop Cluster | 125

http://exoscale.ch

Hit http://ch.archive.ubuntu.com precise Release
..../snip/.....
You can log into instances using the following ssh commands:
[hadoop-datanode+hadoop-tasktracker]: ssh -i /Users/sebastiengoasguen/.ssh/...
[hadoop-datanode+hadoop-tasktracker]: ssh -i /Users/sebastiengoasguen/.ssh/...
[hadoop-datanode+hadoop-tasktracker]: ssh -i /Users/sebastiengoasguen/.ssh/...
[hadoop-namenode+hadoop-jobtracker]: ssh -i /Users/sebastiengoasguen/.ssh/...
To destroy cluster, run 'whirr destroy-cluster'
with the same options used to launch it.

After the bootstrapping process finishes, you should be able to log in to your instances
and use Hadoop, or if you are running a proxy on your machine, you will be able to
access your Hadoop cluster locally.

126 | Chapter 6: Advanced Recipes

PART IV

Summary

And that’s a wrap! We just covered over 20 different tools that have a CloudStack driver
or plug-in, or that can be used within a CloudStack infrastructure. There is more, and
hopefully this ecosystem will keep on growing to allow you to take full advantage of
your cloud. That way, you can move from “How do I build a cloud?” to using it to
increase your business agility.

CHAPTER 7

Summary

What We Covered
We split this book in three parts. Part I covered installation concepts:

• We reviewed the basic requirements to compile CloudStack from source.
• We introduced the simulator, which can be used for testing.
• We introduced DevCloud, a CloudStack sandbox packaged as a VirtualBox image.
• We presented a new project based on Vagrant as an alternative to DevCloud.
• We went through a step-by-step installation from binaries on Ubuntu 14.04

with KVM.

Part II covered clients and API interfaces, including information on how to:

• Sign CloudStack API requests
• Get started with CloudMonkey, the CloudStack CLI
• Use Apache Libcloud
• Use the jclouds command-line interface
• Use CloStack for your Clojure projects
• Use StackerBee for Ruby developers
• Use EC2Stack to provide an EC2-compliant endpoint
• Use Python Boto with EC2Stack
• Use Eutester to write functional tests compatible with AWS EC2 zones
• Use gstack to provide a GCE-compliant endpoint
• Use rOCCI to provide a standard OCCI endpoint

129

Part III covered configuration management and advanced recipes, including informa‐
tion on how to:

• Get started with Veewee and Packer to create base images for local or cloud use
• Get started with Vagrant and the Vagrant CloudStack plug-in
• Get started with Ansible and how to use it with Vagrant to provision machines in

the cloud
• Use the Chef Knife CloudStack plug-in, including bootstrapping instances with

Hosted-Chef
• Use fluent to store CloudStack logs
• Get started with RiakCS and how to use it for CloudStack secondary storage
• Use Apache Whirr to provision Big Data solutions

Other Areas to Explore
The CloudStack ecosystem is evolving fast with new tools appearing all the time. For
instance, NTT recently developed a CloudFoundry BOSH CPI and folks at Klarna
developed a Packer builder for CloudStack, which hopefully should be merged soon.

If you want to get involved with the CloudStack community, there are several avenues
for you to do so:

• Join the mailing lists and do not forget to put some filters (otherwise, you might
get overwhelmed by the amount of traffic).

• Join the IRC channels on irc.freenode.net; developers hang out on #cloudstack-
dev and users hang out on #cloudstack.

• Twitter can be a good source of information about latest development in the eco‐
system, so follow the CloudStack community (@cloudstack).

• If you use a particular tool and find any issues, you should file a ticket with that
project, but you can also file an issue with the CloudStack JIRA instance.

GitHub has become the main source of information for open source software. You can
find most if not all of the ecosystem on GitHub:

• Check out the CloudStack mirror.
• Most clients are available with the search.
• Some of the tools are also listed under CloudStack extras.

130 | Chapter 7: Summary

http://bit.ly/BOSH_CPI
http://klarna.com
http://bit.ly/Packer_builder
http://bit.ly/CloudStack_mail
https://twitter.com/CloudStack
http://bit.ly/CS_JIRA
https://github.com/apache/cloudstack
http://bit.ly/search_clients
http://bit.ly/search_clients

Final Words
Building a cloud is only a small part of changes happening in IT these days. Architecting
and implementing an IaaS offering should be straightforward, and when I see all the
CloudStack clouds in production today, I believe it is. We need to start thinking beyond
building a cloud and start taking advantage of it. Building a cloud is just one step on
our way to changing how we do IT. We need change in application deployments work‐
flow, change in application/resource life cycle, change in the way developers and system
administrators operate and use the infrastructure. All that change in the name of busi‐
ness agility.

Amazon Web Services started in 2005/2006 with the now well-known S3 and EC2 serv‐
ices, and they are the building blocks for providing higher level services—from appli‐
cation deployments to data warehousing and real-time processing. The focus should be
on providing services and building a vibrant ecosystem. Whether you use CloudStack,
OpenStack, Eucalyptus, or OpenNebula should not matter. What should matter is the
availability of tools and plug-ins to beef up your arsenal and take advantage of that cloud.
Hopefully this book showed you that the CloudStack ecosystem is vibrant, strong, and
developing fast. It is driven by users of existing CloudStack deployments who have now
moved beyond the design and implementation issues of building a cloud and are now
focused on the ecosystem around it to change the way they do IT and have a direct
impact on the business mission.

Final Words | 131

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
addImageStore API, 121
advanced recipes, 109–126

Apache Whirr, 122
installing, 122
using to deploy a Hadoop cluster, 123

Basho Riak CS object store, 114
installing RiakCS on Ubuntu, 116
playing with Riak, 115
using Boto to store data in RiakCS, 118
using RiakCS as secondary storage for

CloudStack, 119
configuring fluentd CloudStack plug-in, 110
installing fluentd to collect CloudStack logs

and events, 109
using MongoDB as Fluent data store, 112

agents
configuring libvirt for CloudStack KVM

agent, 24
Linux bridge setup for KVM agent, 25
setting hostname and local DNS names, 23

Amazon Web Services (AWS) API, 34
Ansible, 85

introducing to configure cloud instances, 95
playbooks, 91
provisioning with playbooks, 96
provisioning with Vagrant CloudStack plug-

in, 99
Apache Libcloud (see Libcloud)

Apache Whirr, 122–126
installing, 122
using to deploy a Hadoop cluster, 123

API clients, 33–63
Apache Libcloud, 45

hybrid cloud applications using libcloud,
49

installing, 46
managing key pairs and security groups,

48
using IPython interactive shell, 50

Clojure CloStack, 55
starting a virtual machine, 58
using in your own Clojure project, 60

CloudMonkey
configuring, 40
installing, 39
starting a virtual machine instance, 43
using as an interactive shell, 42

CloudStack API, 35
getting API keys, 36
jclouds CLI

installing and configuring, 51
using with CloudStack, 53

signing an API request, 36
StackerBee, Ruby client, 62

API interfaces, 65–82
adding an AWS EC2 API, 68
AWS EC2 compliant interface, 65

133

installing and configuring gstack, 74
supporting OCCI standard in CloudStack,

80
testing AWS compatibility with Eutester, 71
using AWS CLI with EC2Stack, 66
using gstack with gcutil tool, 75
using Python Boto with EC2Stack, 69

availability zones, 27
AWS (Amazon Web Services), vagrant-aws

plug-in, 92
AWS EC2 interface to CloudStack, 65

improving EC2Stack API coverage, 68
testing compatibility with Eutester, 71
using Python Boto with EC2Stack, 69

B
Basho Riak CS object store, 114

(see also advanced recipes)
Boto

using to store data in RiakCS, 118
using with EC2Stack, 69

C
CentOS

installing CloudStack prerequisites, 4
installing packages to build CloudStack

packages from source, 14
Chef

configuration of NFS and MySQL server and
NAT routing, 11

cookbooks, 92
hosted Chef, 105
Knife command-line utility, 101

CIMI (Cloud Infrastructure Management Inter‐
face), 80

clients, 33
(see also API clients)

Clojure, 55
using CloStack in your own Clojure project,

60
CloStack, 55

exploring API calls you can make, 58
installing, 56
starting a virtual machine, 58
using in your own Clojure project, 60

cloud providers
libcloud support for, 46
multiple, use with libcloud, 49

cloud, taking advantage of, 131
CloudMonkey

configuring, 40
installing, 39
opening with cloudmonkey command, 40
starting a virtual machine instance with, 43
updateCloudToUseObjectStore API call, 121
using as an interactive shell, 42
using as straightforward CLI, 40

CloudStack, vii
other areas to explore, 130
sandbox (see DevCloud)
using the CloudStack simulator, 7

command line interface (CLI)
jclouds CLI, installing and configuring, 51
using AWS CLI with EC2Stack, 66
using CloudMonkey as, 40

compute offerings, 29
compute service offerings, listing with gcutil, 77
configuration management, 83–108

Ansible
introducing to configure cloud instances,

95
provisioning with Ansible playbooks, 96
provisioning with Vagrant CloudStack

plug-in, 99
Knife

installing Knife-CloudStack plug-in, 102
starting an instance with, 104

Packer, using to build cloud images, 88
Vagrant

installing to build and test cloud images,
90

using Vagrant CloudStack plug-in, 92
Veewee

installing, 86
using to create a Vagrant base box, 86

cookbooks, 105
(see also Chef)

CPU overprovisioning factor, 28
create_node method, 47

D
dashboard, Apache CloudStack, 28
databases

MongoDB, using as Fluent data store, 113
Riak NoSQL database, 115
setting up CloudStack database, 20

Debian packages, building, 13

134 | Index

dependencies
for CloudMonkey, 39
for CloudStack development, installing, 3

DevCloud, 9
adding as hypervisor to management server,

10
installing prerequisites for, 9

dummy boxes, creating, 93

E
EC2 interface to CloudStack, 65
EC2Stack

improving API coverage, 68
installing and configuring, 65
using AWS CLI with, 66
using Eutester to write functional tests, 72
using Python Boto with, 69

Elasticsearch, storing CloudStack logs in, using
Fluent, 109

Eutester
installing to test AWS compatibility, 71
methods available through CloudStack AWS

EC2 interface, 73
using with EC2Stack, 72

F
firewalls

configuring egress firewall rules, 108
listing with gstack, using gcutil, 78

Flask applications
EC2Stack, 65
gstack, 74

Fluent, 109
configuring fluentd CloudStack plug-in, 110
installing fluentd to collect CloudStack logs

and events, 109
using MongoDB as data store, 112

G
GCE (see Google Compute Engine)
GCE GA v1.0 API, 79
gcutil, 74

installing and configuring, 75
using gstack with, 76–79

Git
Apache CloudStack CloudMonkey reposito‐

ry, 40

Apache CloudStack repository, 6
cloning GSoC-2014, 12
CloudStack ecosystem on GitHub, 130
installing on Ubuntu 14.04, 4
online GitHub tutorial, 6

Google Compute Engine (GCE), 75
(see also gstack)
installing and configuring gstack, Cloud‐

Stack GCE interface, 74
Google Compute Engine (GCE) API, 33
Google Summer of Code (GSoC), Vagrant-

based CloudStack testing deployment, 11
gstack

installing and configuring, 74
using with gcutil tool, 75–79

H
Hadoop clusters, 122

using Apache Whirr to deploy, 123
HMAC (Hashed Message Authentication Code),

37
hosted Chef, 105
HTTP methods used by CloudStack API, 33

GET requests, 35
hypervisors

KVM hypervisor, 15
preparing a KVM hypervisor, 22
supported by CloudStack, 22
using DevCloud to run Xen hypervisors in

virtualbox image, 9

I
image catalog, setting up and seeding with Sys‐

temVM template, 21
images

available, listing with gcutil, 77
building and testing with Vagrant, 90
building cloud images with Packer, 88

installation
installing from packages, 15–31

basic zone network configuration and
NAT router setup, 25

configuring a basic zone, 27
configuring libvirt, 24
installing prerequisites on management

server, 17
preparing a KVM hypervisor, 22

Index | 135

setting up image catalog and seeding it
with SystemVM template, 21

setting up management server, 19
troubleshooting your first CloudStack

deployment, 30
installing from source, 1–14

building CloudStack from source and
running management server locally, 6

building CloudStack packages from
source, 13

prerequisites for CentOS 6.5, 4
prerequisites for Unbuntu 14.04, 3
using CloudStack sandbox, DevCloud, 9
using CloudStack simulator, 7
Vagrant-based CloudStack testing de‐

ployment, 11
inventory of instances (Ansible), 100
IP address, allocating and associating using

Knife, 107
IPv4 forwarding, setting up on management

server, 25
IPython

using with Boto, 70
using with Libcloud, 50

J
Java

Java Virtual Machine (JVM), Clojure pro‐
gramming language for, 55

libvirt binding for CloudStack KVM agent,
24

jclouds, 122
jclouds CLI

installing and configuring, 51
using with CloudStack, 53

Jetty, 6
starting new management seerver with sim‐

ulator profile, 8

K
key pairs

creating SSH key pairs with CloudMonkey,
45

managing SSH key pairs with Libcloud, 48
managing with Knife-CloudStack, 107

keys, API, 36
Knife, 101

starting an instance in the cloud, 104

Knife-CloudStack
installing, 102
listing all available commands, 103
managing key pairs and security groups, 107
pasing list of fields to output, 103

KVM hypervisor
configuring libvirt for CloudStack KVM

agent, 24
Linux bridge setup for KVM agent, 25
preparing, 22

setting hostname and local DNS names
of agent, 23

KVM-based image, 9

L
Leiningen

installing, 55
using to create a Clojure project skeleton, 60

Libcloud, 45
hybrid cloud applications using, 49
installing, 46
managing key pairs and security groups, 48
using IPython interactive shell with, 50

libmysql-java package, 17
libvirt, configuring for CloudStack KVM agent,

24
list virtualmachines API call, 45
local storage

enabling for compute offerings, 29
using for primary storage, 21

log aggregation framework (see Fluent)

M
machine types, listing with gcutil, 77
management server

installing prerequisites on Ubuntu 14.04, 17
interaction between KVM hypervisor and,

23
setting up, 19

adding community CloudStack reposito‐
ry, 19

database for CloudStack, 20
installing dependencies, 19

setting up IPv4 forwarding on, 25
Marvin, 8

deploying and configuring datacenter, 8
deploying datacenter and configuring for

DevCloud hypervisor, 10

136 | Index

installing, 8
Maven

DevCloud-specific profiles, 10
installing on Ubuntu 14.04, 4

MongoDB, using as Fluent data store, 112–114
MySQL

checking status and starting, 5
installing on Ubuntu 14.04, 4
service offering table, updating, 31

N
networking

basic networking zone, 15
editing network interfaces on management

server and KVM hypervisor, 17
network bridge setup, 25

NFS filesystem exported by management server,
mounting on KVM hypervisor, 22

NFS server, setting up and exporting NFS share
to hypervisor, 21

NFS store secondary storage, migrating to ob‐
ject store, 120

O
object store, Basho RiakCS, 114
OCCI (Open Cloud Computing Interface), sup‐

porting in CloudStack, 80
installing rOCCI client, 81
installing rOCCI server, 80
testing OCCI client against the server, 82

OGF (Open Grid Forum), 80
OpenJDK, installing on Ubuntu 14.04, 4
overprovisioning factors, 28

setting in Global Settings, 30

P
packages, 15

(see also installation, installing from pack‐
ages)

building CloudStack packages from source,
13

Packer, 85, 130
building cloud images, 88

primary storage, 21
public clouds, 74
Python

creating a API request and signing it, 37

version 2.7, required by Marvin, 8
Python Boto

using to store data in RiakCS, 118
using with EC2Stack, 69

Python management tools, installing, 4
Python Package Index utility (pip)

installing, 5
installing Libcloud, 46

Q
query asyncjobresult API call, 44

R
RAM usage of systemVMs, changing, 30
repositories

community repository for CloudStack pack‐
ages, 14

creating for CloudStack packages, 13
setting up management server to use Cloud‐

Stack community repository, 19
Riak, 115
RiakCS, 114

installing on Ubuntu 12.04, 116
using as secondary storage for CloudStack,

119
using Python Boto to store data in, 118

rOCCI client, installing, 81
rOCCI server, installing and running, 80
Ruby

Knife-CloudStack, 102
StackerBee client for CloudStack, 62

S
sandbox (see DevCloud)
secondary storage, 21

seeding with SystemVM templates, 22
verifying accessibility, 31

security groups
creating with CloudMonkey, 45
creating with gcutil, 78
managing with Knife-CloudStack, 107
managing with Libcloud, 48

security policies for libvirt, 24
shells

CloudMonkey, interactive shell for Cloud‐
Stack, 39

riakCS Boto shell, 119

Index | 137

using CloudMonkey as interactive shell, 42
using IPython interactive shell with libcloud,

50
simulator profile, building CloudStack with, 8
SSH

root user to CloudStack deployment, 17
Vagrant configuration to SSH to an instance,

100
SSH key pairs

creating with CloudMonkey, 45
managing with Libcloud, 48

StackerBee, 62
installing, 62

stop virtualmachine API call, 45
system virtual machines (SVMs)

changing RAM usage, 30
seeding image catalog with SystemVM tem‐

plate, 21

T
templates

building virtual machine templates, 86
defining local box which references a tem‐

plate in the cloud, 93
tools, new, 130
troubleshooting your first CloudStack deploy‐

ment, 30

U
Ubuntu

building CloudStack packages from source,
13

installing CloudStack prerequisites (version
14.04), 3

updateCloudToUseObjectStore API, 120
updatecloudtoUseObjectStore API, 121

V
Vagrant, 85

CloudStack plug-in, using with Ansible, 99
CloudStack testing deployment based on, 11

handling multiple machine definitions, 95
installing to build and test cloud images, 90
provisioning documentation, 92
using Packer to build XenServer Vagrant

box, 88
using Vagrant CloudStack plug-in, 92
using Veewee to create a base box, 86

Veewee, 85
installing, 86
using to create a Vagrant base box, 86
Vagrant, 91

virtual machine providers, 86
virtual machine templates, 86

(see also Veewee)
building to start Linux distribution ISOs, 86

virtual machines (VMs)
JVM (Java Virtual Machine), Clojure pro‐

gramming language for, 55
managing with jclouds CLI, 53
starting an instance with CloudMonkey, 43
starting with CloStack, 58
starting with Libcloud, 47

virtual private clouds (VPCs), 69
VirtualBox

DevCloud image, 9
using Veewee with, 86

W
Whirr (see Apache Whirr)
WSGI HTTP servers, 75

X
XenServer Vagrant box, using Packer to build,

88

Z
zones

basic networking zone, 15
basic zone network configuration, 25
configuring a basic zone, 27
listing availability zones with gcutil, 77

138 | Index

About the Author
Sébastien Goasguen built his first computer cluster while working on his PhD in the
late 1990s (when they were still called Beowulf clusters), and he has been working on
making computing a utility ever since. He has done research in grid computing and
high performance computing, and with the advent of virtualization, moved to cloud
computing in the mid 2000s. He is currently a senior open source solutions architect at
Citrix, where he works primarily on the Apache CloudStack project, helping develop
the CloudStack ecosystem.

Sébastien is a project management committee (PMC) member of CloudStack and
Apache Libcloud, and a member of the Apache Software Foundation. He focuses on the
cloud ecosystem and has contributed to Knife-cloudstack, Eutester, and Ansible among
other open source projects. He is also driving the localization effort of the CloudStack
documentation using Transifex and ReadTheDocs.

Colophon
The animal on the cover of 60 Recipes for Apache CloudStack is a Virginia Northern
flying squirrel (Glaucomys sabrinus fuscus), a subspecies of the Northern flying squirrel.
Related subspecies of flying squirrel are found across North America in Canada and all
but the southernmost United States. Mixed and coniferous forests provide suitable
habitats for the Northern flying squirrel, which requires generous tree growth for its
preferred form of travel.

The flying squirrel does not fly so much as glide, aided in its graceful descent by the
patagium, a loose flap of skin stretching between the fore and hind leg on either side of
its body. It can launch itself from a treetop from both standing and running positions
and adjusts its pitch with a quick flick of its tail to ensure a smooth landing on the trunk
of a new tree. Research suggests that the flying squirrel’s ability to glide between trees
has evolved as a form of locomotion more physiologically economical than movement
on all fours across the forest floor.

Flying squirrels are nocturnal and do not hibernate. They have been known to enjoy
truffles and other fungi as well as mast. Their living quarters in the cavities of trees are
often shared with both relatives and non-relatives.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Shaw’s Zoology, vol. 2.1. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Why I Wrote This Book
	CloudStack Within the Cloud Computing Picture in 500 Words
	How This Book Is Organized
	Technology You Need to Understand
	Online Content
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Installation
	Chapter 1. Installing from Source
	1.1. Installing the Prerequisites for Ubuntu 14.04
	Problem
	Solution
	Discussion

	1.2. Installing the Prerequisites for CentOS 6.5
	Problem
	Solution
	Discussion

	1.3. Installing from Source
	Problem
	Solution
	Discussion

	1.4. Using the CloudStack Simulator
	Problem
	Solution
	Discussion

	1.5. Using the CloudStack Sandbox: DevCloud
	Problem
	Solution
	Discussion

	1.6. Vagrant-Based CloudStack Testing Deployment
	Problem
	Solution
	Discussion

	1.7. Building CloudStack Binary Packages
	Problem
	Solution
	Discussion

	Chapter 2. Installing from Packages
	2.1. Installing the Prerequisites on the Management Server
	Problem
	Solution
	Discussion

	2.2. Setting Up the Management Server
	Problem
	Solution
	Discussion

	2.3. Setting Up an Image Catalog and Seeding it with the SystemVM Template
	Problem
	Solution
	Discussion

	2.4. Preparing a KVM Hypervisor
	Problem
	Solution
	Discussion

	2.5. Configuring libvirt
	Problem
	Solution
	Discussion

	2.6. Basic Zone Network Configuration and NAT Router Setup
	Problem
	Solution
	Discussion

	2.7. Configuring a Basic Zone
	Problem
	Solution
	Discussion

	2.8. Troubleshooting Your First CloudStack Deployment
	Problem
	Solution
	Discussion

	Part II. Clients and API Wrappers
	Chapter 3. API Clients
	3.1. The CloudStack API
	Problem
	Solution
	Discussion

	3.2. Signing an API Request
	Problem
	Solution
	Discussion

	3.3. Installing CloudMonkey, the CloudStack Interactive Shell
	Problem
	Solution
	Discussion

	3.4. Configuring CloudMonkey
	Problem
	Solution
	Discussion

	3.5. Using CloudMonkey as an Interactive Shell
	Problem
	Solution
	Discussion

	3.6. Starting a Virtual Machine Instance with CloudMonkey
	Problem
	Solution
	Discussion

	3.7. Using Apache Libcloud with CloudStack
	Problem
	Solution
	Discussion

	3.8. Managing Key Pairs and Security Groups Using Libcloud
	Problem
	Solution
	Discussion

	3.9. Hybrid Cloud Applications Using Libcloud
	Problem
	Solution
	Discussion

	3.10. IPython Interactive Shell with Libcloud
	Problem
	Solution
	Discussion

	3.11. Installing and Configuring jclouds CLI
	Problem
	Solution
	Discussion

	3.12. Using jclouds CLI with CloudStack
	Problem
	Solution
	Discussion

	3.13. Using CloStack: A Clojure Client for CloudStack
	Problem
	Solution
	Discussion

	3.14. Starting a Virtual Machine with CloStack
	Problem
	Solution
	Discussion

	3.15. Use CloStack Within Your Own Clojure project
	Problem
	Solution
	Discussion

	3.16. StackerBee, a Ruby Client for CloudStack
	Problem
	Solution
	Discussion

	Chapter 4. API Interfaces
	4.1. Installing and Configuring EC2Stack
	Problem
	Solution
	Discussion

	4.2. Using the AWS CLI with EC2Stack
	Problem
	Solution
	Discussion

	4.3. Improving the EC2Stack API Coverage
	Problem
	Solution
	Discussion

	4.4. Using Python Boto with EC2Stack
	Problem
	Solution
	Discussion

	4.5. Installing Eutester to Test the AWS Compatibility of Your CloudStack Cloud
	Problem
	Solution
	Discussion

	4.6. Using Eutester with EC2Stack to Write Functional tests
	Problem
	Solution
	Discussion

	4.7. Installing and Configuring gstack: The CloudStack GCE Interface
	Problem
	Solution
	Discussion

	4.8. Using gstack with the gcutil Tool
	Problem
	Solution
	Discussion

	4.9. Supporting the OCCI Standard in CloudStack
	Problem
	Solution
	Discussion

	Part III. Configuration Management and Advanced Recipes
	Chapter 5. Configuration Management
	5.1. Installing Veewee
	Problem
	Solution
	Discussion

	5.2. Using Veewee to Create a Vagrant Base Box
	Problem
	Solution
	Discussion

	5.3. Introducing Packer to Build Cloud Images
	Problem
	Solution
	Discussion

	5.4. Installing Vagrant to Build and Test Cloud Images
	Problem
	Solution
	Discussion

	5.5. Using the Vagrant CloudStack Plug-In
	Problem
	Solution
	Discussion

	5.6. Introducing Ansible to Configure Cloud Instances
	Problem
	Solution
	Discussion

	5.7. Provisioning with Ansible Playbooks
	Problem
	Solution
	Discussion

	5.8. Ansible Provisioning with Vagrant CloudStack Plug-In
	Problem
	Solution
	Discussion

	5.9. Installing knife-cloudstack
	Problem
	Solution
	Discussion

	5.10. Starting an Instance with Knife
	Problem
	Solution
	Discussion

	5.11. Bootstrapping Instances with Hosted Chef
	Problem
	Solution
	Discussion

	Chapter 6. Advanced Recipes
	6.1. Installing Fluentd to Collect CloudStack Logs and Events
	Problem
	Solution
	Discussion

	6.2. Configuring the CloudStack Fluentd Plug-In
	Problem
	Solution
	Discussion

	6.3. Using MongoDB as a Fluent Data Store
	Problem
	Solution
	Discussion

	6.4. Playing with Basho Riak CS Object Store
	Problem
	Solution
	Discussion

	6.5. Installing RiakCS on Ubuntu 12.04
	Problem
	Solution
	Discussion

	6.6. Using Python Boto to Store Data in RiakCS
	Problem
	Solution
	Discussion

	6.7. Using RiakCS as Secondary Storage for CloudStack
	Problem
	Solution
	Discussion

	6.8. Installing Apache Whirr
	Problem
	Solution
	Discussion

	6.9. Using Apache Whirr to Deploy a Hadoop Cluster
	Problem
	Solution
	Discussion

	Part IV. Summary
	Chapter 7. Summary
	What We Covered
	Other Areas to Explore
	Final Words

	Index
	About the Author

