
Information
Management

© 2013 IBM Corporation

IBM DB2 监控与调优

尤祖喜
Information Management Partner Ecosystem
youzuxi@cn.ibm.com

议程

数据库性能问题原因

 DB2数据库监控手段

–事件监控

–监控快照

–监控函数与视图

 DB2 SQL监控与调优

 DB2 Lock监控与调控机制

 DB2 Log监控与调控机制

 DB2 监控常用工具

性能调试从来都是由一个问题开始的

 数据库或者用户的设计问题:
– How should we design our

application/database for the best
performance?

 用户的抱怨：
– This transaction is taking too long

 系统的扩容:
– Can the current system handle a 50%

increase in the size of our database?

3

4

数据库性能调优是一个需要望闻问切、详细诊断的过程

 Performance problems are trickier than functional problems
– Symptoms may provide no clues about the problem source, e.g. you

observe general slowdown and excessive lock timeouts
– A performance problem can be intermittent
– Performance problems can be avoided

 Some common reactions to performance problems (especially if
you’re new at this…)

– Panic
– Buy more hardware (CPU, memory, disk, etc.)
– Blame DB2…

• or AIX / Windows / Linux…
• or IBM / HP / Sun /…

– Take “shots in the dark” at the problem
• Making almost random changes based on not much data

5

什么是性能问题？

 The way a system behaves in response to a particular
workload

Measured in terms of system response time, throughput,
and resource utilization

 Affected by:
– Resources available on the system
– How well those resources are used and shared

 Typically tuned to improve cost-benefit ratio
– Processing larger, or more demanding workloads without

increasing processing costs
– Obtaining faster system response times, or higher throughput,

without increasing processing costs
– Reducing processing costs without degrading service to users

DB2 架构概览

客户机

CPU
DB2 服务器

CPU

CPU

CPU

CPU

CPU

CPU

CPU

并行子代理

协调代理

日志缓冲区 缓冲池

日志记录程序 预取器 页面清理器

DB2进程模型：详细视图

数据磁盘

日志
磁盘

常见客户机UDB 客户机库

活动的

子代理
db2agntp

UDB 服务器

Shared Mem & Semaphores, TCPIP, Named Pipes, NetBIOS, SNA,
IPX/SPX

监听器
实例级

空闲代理池

db2tcpcm
db2ipccm

db2agent （空闲）
协调代理

db2agent

db2pclnr

db2pfchr

db2loggw db2dlock

db2agntp

db2loggr

进程/线程组织
实例级

空闲代理、代理池中的代理
或子代理

应用程序级

数据库级

预取器

页面清理器

缓冲池

死锁
检测器

日志记录
子系统 日志缓冲区

数据库级

空闲

8

DB2 数据库实例

 Stand-alone DB2 environment

 Can have multiple instances

per data server/OS instance

 All instances share the same

executable binary files

 Each instance has its own

configuration

 Different software level for an

instance

Instance ‘db2inst1’

Database DB1

Syscatspace Userspace1

Tablespace1

Table 1

Table 2

Tablespace2

Table 1

Table 2

Storage Group

spath: /hot/fs1

SG _HOT

Storage Group

spath: /warm/fs1

spath: /warm/fs2

SG _WARM

 Table space
– Collection of containers

 Container
– Physical storage device

 Extent:
– Consecutive pages in a table space

 Page
– Smallest unit of storage in DB2

 Storage Group
– New layer of abstraction between logical

(table spaces) and physical storage (containers)
9

DB2 Storage

 Instance Database Schema Table Row/Cell

Extent 1 Extent 2

Container 1 Container 2

Tempspace1

Extent 0

Container 0

Extent 3

Extent 0

Container 0

10

数据库的性能问题可能是多方面的

Bottleneck

Type?

Disk

Bottleneck

Data

Tablespace

Temp

Tablespace

Index

Tablespace

Log

Devices

Bad plan giving tablescan?

Old statistics?

Need more indexes?

Insufficient prefetchers?

Over-aggressive cleaning?

LOB reads/writes?

Bad plan(s) giving excessive

index scanning?

Need more/different indexes?

Insufficient sortheap?

Missing indexes?

Anything sharing the disks?

High transaction rate

Too-frequent commits?

Mincommit too low?

High data volume

Logging too much data?

CPU

Bottleneck
Network

Bottleneck

“Lazy

System”

Data

Tablespace

High User

Time

High

System

Time

SQL w/o parameter markers?

Too small dyn SQL cache?

Apps connecting/disconnecting?

Non-parallelize application?

Old device drivers?

Latch contention?

Low memory – page faults?

Excessive data flow?

• LOBs

• intermediate data

Shared n/w conflict

Lock escalation?

Lock contention?

Deadlocks?

Too few prefetchers?

Too few cleaners?

Append contention?

Mincommit too high?

Inadequate disk configuration / subsystem?

11

性能调试的限制

 How much time and money should be spent?
–Assess the degree to which the
investment will help the users

 Tuning can often help improve
–Response times
–Throughput problems

More significant problems may require
–More disk storage
–Faster/additional CPUs
–More memory
–Faster network

12

性能调试的方式与基线

 Normal part of the application development life cycle
– Involves application developers and database administrators

 Determines current performance and can be used to improve application
performance

 Based upon controlled conditions
– Repeatedly running SQL from your application
– Change some of the following, for example, between iterations:

• System configuration
• SQL
• Indexes
• Table space configurations
• Hardware configurations

– Repeat until the application runs as efficiently as possible

 Characteristics of good benchmarks include:
– Repeatable tests
– Each iteration starts in the same system state
– No other applications are unintentionally active in the system
– Hardware and software used match production environment

13

CPU – the Main Independent Variable in Performance

 Rule of Thumb for Business Intelligence (BI) environments:
– 200-300 GB of active raw data per processor core is a reasonable

estimate

Other environments (OLTP):

 Try to gauge amount of CPU required based on one or more existing DB2
systems.

• E.g.: new system to handle 50% more users, SQL is at least as complex as on
an existing system  reasonable to assume that 50% more CPU capacity is
required

– Take a look at www.tpc.org TPC-C DB2 results, for example:
• 8 core IBM POWER7 4.14GHz = ~1.2M TPM
• 64 core IBM POWER6 5 GHz = ~6M TPM
• 192 core IBM POWER7 7 3.86 GHz = ~10M TPM
• 10 core Intel Xeon 2.4 GHz = ~3M TPM
• 32 core Intel Xeon 2.26 GHz = ~2.3M TPM

http://www.tpc.org/

Storage

Considerations:
– I/O Throughput

• I/Os per Second (IOPS)

• Megabytes per Second (MBPS)

– Storage Capacity

– Separate dedicated (unshared) disks for logging

Rules of Thumb:
– 15K RPM Fibre Channel disk = ~200 IOPS @ ~10 milliseconds response time

– Solid State Drives (SSDs) I/O service times are typically less than a millisecond, instead

of up to approximately 10 ms, for typical small random reads from physical disks

Because CPU processing speeds have increased substantially

relative to spindle speeds:
– For OLTP, ensure that there are 15 - 20 dedicated physical disks per CPU core.

– For warehousing, ensure that there are 8 - 10 disks per CPU core

Logging:
– For OLTP, fast log response time is often more important than I/O service times for data,

which is frequently asynchronous

– Allocate 15 - 24% of the spindles for logs and the rest for data

14

15

Memory

Decouples CPUs and Disks

 Limited by addressable shared memory
– 32 bit ~4GBs (supported on only Windows and Linux)
– 64 bit virtually unlimited (17.2 billion gigabytes, 16.8 million terabytes, or

16 exabytes)

Not uncommon for some database servers to have 10’s to 100’s
of GB of RAM

 Rule of thumb is about 4-8GB RAM per core
– 4GB per core for Intel/AMD (System x)
– 8GB per core for POWER (System p)

议程

数据库性能问题原因

 DB2数据库监控手段

–事件监控

–监控快照

–监控函数与视图

 DB2 SQL监控与调优

 DB2 Lock监控与调控机制

 DB2 Log监控与调控机制

 DB2 监控常用工具

17

Introduction

 Database monitoring
– Tasks associated with examining the operational status of your database

 Database monitoring is a vital activity for:
– The maintenance of performance
– Health of your database management system

 Collects information from:
– Database manager
– Its databases
– Connected applications

18

Monitor Elements

 Data structures used to store information about a
particular aspect of the database system status

– Each monitor element reflects one of the following types of data:

• Counter: the number of times something happens

deadlocks: the total number of deadlocks that have occurred

rows_deleted: the number of row deletions attempted

total_sorts: the total number of sorts that have been executed

• Gauge: a measurement of how much of something is happening or is used

total_section_proc_time or total_sort_time: measures of how much time

is used in different phases of processing

• Watermark: the highest value reached for a given measurement

uow_total_time_top: the lifetime of the longest-running unit of work since

the database was activated

• Text: many monitor elements report text values

stmt_text: the text of an SQL statement

• Timestamp: the time that something happened

conn_time: the time that a connection was made to a database

NEW IN
DB2 10

19

Monitor Elements - Categories

 Request monitor elements (also known as request metrics)
– Measure the volume of work or effort expended by the database server

to process requests issued directly by an external application (application
requests), by a coordinator agent to a subagent or by an agent at a different
database member

• Overall system processing

total_cpu_time

total_wait_time

total_rqst_time

rqsts_completed_total

• Client-server processing

client_idle_wait_time

tcpip_recv_volume

• Data Server processing

lock_wait_time

pool_read_time

• Specific Data Server environment:

fcm_recv_wait_time

wlm_queue_time_total

– Available through Table Functions and Event Monitors

20

Monitor Elements - Categories

 Activity monitor elements (also known as activity metrics)

– Subset of request monitor elements:

• Monitor the work done to execute SQL statement sections, including

locking, sorting, and row processing
direct_read_time

effective_isolation

STMT_TEXT

– Available through Table Functions and Event Monitors

 Data Object monitor elements
– Provide information about operations performed on particular data objects,

including tables, indexes, buffer pools, table spaces and containers
TABLE_SCANS

ROWS_INSERTED

INDEX_SCANS

– Available through Table Functions
NEW IN
DB2 10

21

Monitor Elements – Collection Levels

 REQUEST METRICS {NONE | BASE | EXTENDED}
– Broadest (highest) collection level specified by:

• Database configuration parameter: MON_REQ_METRICS

• CREATE/ALTER SERVICE CLASS… COLLECT REQUEST METRICS

 ACTIVITY METRICS {NONE | BASE | EXTENDED}
– Broadest (highest) collection level specified by:

• Database configuration parameter: MON_ACT_METRICS

• CREATE/ALTER WORKLAD… COLLECT ACTIVITY METRICS

 DATA OBJECT METRICS {NONE | BASE | EXTENDED}
– Database configuration parameter: MON_OBJ_METRICS

 Always collected

22

Monitor Elements – DB2 10 Enhancements

 Some of the new monitor elements:

– evmon_wait_time The amount of time that an agent waited for an event

monitor record to become available

– total_extended_latch_wait_time The amount of time, in milliseconds, spent in

extended latch waits

– total_extended_latch_waits The number of extended latch waits

– intra_parallel_state The current state of intrapartition parallelism reported at

statement, activity, transaction, or workload level

– total_stats_fabrication_time Is the statistics collection activity needed to

generate statistics during query compilation

– total_stats_fabrication_proc_time The total non-wait time spent on statistics

fabrications by real-time statistics gathering

– total_sync_runstats_time The total time spent on synchronous RUNSTATS

activities triggered by real-time statistics gathering

– total_disp_run_queue_time The total time that requests, that were run in this

service class, spent waiting to access the CPU

NEW IN
DB2 10

23

Monitoring Framework - Three Focus Areas

 System
– Provide total perspective of application work being done by database system
– Aggregated through the WLM infrastructure

 Activity
– Provide perspective of work being done by specific SQL statements
– Aggregated through the package cache infrastructure

 Data objects
– Provide perspective of impact of application work on data objects
– Aggregated through data storage infrastructure

24

Performance Monitoring Methodology

 Operational monitoring strategy
– Needs to be very light weight
– Analysis and comparison of monitoring data
– Do not limit yourself to just metrics that the DB2 product provides

 Types of data are useful to collect
– A basic set of DB2 system performance monitoring metrics
– DB2 configuration information
– Overall system load
– Throughput and response time measured at the business logic level

25

Performance Monitoring Methodology - Continued

 Basic set of system performance monitor elements
– The number of transactions executed
– Analysis and comparison of monitoring data
– Buffer pool hit ratios, measured separately for data, index, XML storage object,

and temporary data
– Buffer pool physical reads and writes per transaction
– The ratio of database rows read to rows selected
– The amount of time spent sorting per transaction
– The amount of lock wait time accumulated per thousand transactions
– The number of deadlocks and lock timeouts per thousand transactions
– The number of dirty steal triggers per thousand transactions
– The number of package cache inserts per thousand transactions
– The time an agent waits for log records to be flushed to disk
– In partitioned database environments, the number of fast communication

manager (FCM) buffers sent and received between partitions

26

Essential Monitoring Targets

 Track key performance indicators

– Practical approach, too many = diminished returns

– Key DB2 monitoring elements as indicators

• Stand alone elements

• Calculate ratios

– DB2 monitoring elements can be captured from:

• Snapshot monitoring

Switch based

Some CPU overhead (1-10%)

Easy to reset counters

• Monitor table functions and views via SQL

SQL based, easy to tabularize

Monitoring elements queried from memory, lower overhead than

Snapshot based monitoring

27

Essential Monitoring Targets – Database Level

 Key areas

– TOTAL TRANSACTIONS

– BUFFER POOL HIT RATIOS (DATA, INDEX, TEMP)

– READS AND READ EFFICIENCIES

– SORTING

– LOCKS

– PAGE CLEANING

– PACKAGE CACHE CAPACITY

– TRANSACTION LOGS

 Save data to tables

– Aggregate, differentiate, interpolate, extrapolate modulate

 Look for trends

– Avoid catastrophes

– Easier to fix before broken

28

Essential Monitoring Targets – TOTAL TRANSACTIONS

 Total number of transactions executed by applications:

COMMIT_SQL_STMTS + ROLLBACK_SQL_STMTS

– Snapshot monitoring: database or application level

– Event Monitor: database or connection level

 Total number of units of work:

COMMIT_SQL_STMTS + INT_COMMITS +

ROLLBACK_SQL_STMTS + INT_ROLLBACKS

 Total number of commit and rollback statements issued by the client

application

– System Monitor Table Functions or Event Monitors:

TOTAL_APP_COMMITS + TOTAL_APP_ROLLBACKS

 Useful for creating key ratios like reads/commit

– Adds element of “relativity” to monitoring

29

Essential Monitoring Targets – BP HIT RATIO

 BUFFER POOL HIT RATIOS, measured separately for DATA, INDEX

and XDA
– MON_BP_UTILIZATION Administrative View

 For each Bufferpool:

– DATA_HIT_RATIO_PERCENT

• Percentage of time that the database manager did not need to load a page from disk

to service a data page request

– INDEX_HIT_RATIO_PERCENT

• Percentage of time that the database manager did not need to load a page from disk

to service an index data page request

– XDA_HIT_RATIO_PERCENT

• Auxiliary storage objects hit ratio, that is, the percentage of time that the database

manager did not need to load a page from disk to service a data page request for

XML storage objects (XDAs)

SELECT SUBSTR(bp_name ,1,30) as BPNAME,

data_hit_ratio_percent as DATA_HR,

index_hit_ratio_percent as INDEX_HR,

xda_hit_ratio_percent as XDA_HR

FROM SYSIBMADM.MON_BP_UTILIZATION

30

Essential Monitoring Targets – BP HIT RATIO

 BUFFER POOL HIT RATIOS, measured globally and separately for

DATA, INDEX and XDA

– BP_HITRATIO Administrative View

– EXAMPLE: Returns bufferpool hit ratios, including total hit ratio, data hit ratio,

XDA hit ratio and index hit ratio, for all bufferpools and all database partitions in

the currently connected database

– SNAP_GET_BP Table Function

• Use to aggregate results from all partitions or report on single partition

– GET SNAPSHOT FOR ALL BUFFERPOOLS Command

SELECT substr(db_name,1,8) as db_name

, substr(bp_name,1,14) as bp_name

, total_hit_ratio_percent

, data_hit_ratio_percent

, index_hit_ratio_percent

, xda_hit_ratio_percent

, dbpartitionnum

FROM SYSIBMADM.BP_HITRATIO

ORDER BY dbpartitionnum

OLTP

GOOD HIT RATIO:

Data: > 80-85%

Indexes: > 90-95%

31

Essential Monitoring Targets – I/O EFFICIENCY

 Number of ROWS READ PER TRANSACTION
NOTE: is not the # of rows that were returned to the calling application, but the # of rows that had to be

read from the table in order to return the result set (table scan vs index access only)

– SNAPDB Administrative View

– SNAP_GET_DB Table Function

– GET SNAPSHOT FOR DATABASE Command

OLTP

< 10 Excellent 10 - 20 Very Good

20 - 40 Fair > 50 Tune

Is that a lot?

SELECT VARCHAR(db_name,10)

, CASE WHEN (commit_sql_stmts + rollback_sql_stmts) > 0

THEN DEC(((rows_read)

/ commit_sql_stmts + rollback_sql_stmts), 13, 2)

ELSE NULL

END AS READS_PER_TRANSACTION

, rows_read as ROWS_READ

, commit_sql_stmts + rollback_sql_stmts as TOTAL_TRX

, db_conn_time as FIRSTDB_CONN

, last_reset as LAST_RESET

FROM SYSIBMADM.SNAPDB;

32

Essential Monitoring Targets – I/O EFFICIENCY

 Total amount of CPU TIME

– MON_PKG_CACHE_SUMMARYAdministrative View

– Aggregate metrics overall executions of each SQL

statement (static or dynamic) in the cache:

• TOTAL_CPU_TIME

Total amount of CPU time, in microseconds, used while within the DB2®

database manager (combined total of both user and system CPU time)

• TOTAL_LOCK_WAIT_TIME

Total elapsed time, in milliseconds, spent waiting for locks

• TOTAL_IO_WAIT_TIME

The total elapsed time, in milliseconds, spent on I/O operations

SELECT total_cpu_time

, total_lock_wait_time

, total_io_wait_time

, avg_io_wait_time

, avg_lock_wait_time

FROM SYSIBMADM.MON_PKG_CACHE_SUMMARY

ORDER BY total_cpu_time DESC

FETCH FIRST 20 ROWS ONLY

33

Essential Monitoring Targets - LOCK WAIT TIME

 Information for each workload
–SYSPROC.MON_GET_WORKLOAD Table Function

–SYSPROC.MON_GET_WORKLOAD_DETAILS Table Function

SELECT varchar(workload_name,30) as workload_name

, sum(lock_wait_time) as total_lock_wait_time

, sum(lock_waits) as total_lock_waits

, sum(lock_timeouts) as total_lock_timeouts

, sum(lock_escals) as total_lock_escals

FROM TABLE(MON_GET_WORKLOAD('',-2)) AS t

GROUP BY workload_name

ORDER BY total_lock_wait_time DESC;

SELECT varchar(wlmetrics.workload_name,30) as workload_name,

sum(detmetrics.lock_wait_time) as total_lock_wait_time,

sum(detmetrics.lock_waits) as total_lock_waits,

sum(detmetrics.lock_timeouts) as total_lock_timeouts,

sum(detmetrics.lock_escals) as total_lock_escals

FROM TABLE(MON_GET_WORKLOAD_DETAILS('',-2)) AS WLMETRICS,

XMLTABLE (XMLNAMESPACES(DEFAULT 'http://www.ibm.com/xmlns/prod/db2/mon'),

'$detmetric/db2_workload' PASSING

XMLPARSE(DOCUMENT WLMETRICS.DETAILS)

as "detmetric"

COLUMNS "LOCK_WAIT_TIME" INTEGER PATH 'system_metrics/lock_wait_time',

"LOCK_WAITS" INTEGER PATH 'system_metrics/lock_waits',

"LOCK_TIMEOUTS" INTEGER PATH 'system_metrics/lock_timeouts',

"LOCK_ESCALS" INTEGER PATH 'system_metrics/lock_escals'

) AS DETMETRICS

34

Essential Monitoring Targets - SORTING

 SORTING metrics
–SYSPROC.MON_GET_WORKLOAD Table Function

–TOTAL_SECTION_SORT_TIME / (TOTAL_APP_COMMITS +

TOTAL_APP_ROLLBACKS)

–SORT_OVERFLOWS / TOTAL_SORTS = % of sorts that need more

heap space

–TOTAL_SECTION_SORT_TIME / TOTAL_SORTS = average sort time

SELECT VARCHAR(workload_name,30)

, CASE WHEN (total_app_commits + total_app_rollbacks) > 0

THEN DEC((total_section_sort_time) / (

(total_app_commits) + (total_app_rollbacks)),8,5)

ELSE NULL

END AS SORTTIME_PER_TRX

, CASE WHEN total_sorts > 0

THEN ((total_section_sort_time) *.001)/(total_sorts)

ELSE NULL

END as AVG_SORTTIME

, total_sorts as TOTAL_SORTS

, total_section_sort_time as TOTAL_SORTTIME

, sort_overflows as TOTALSORTOVERFL

, (total_app_commits + total_app_rollbacks) as TotalTransactions

FROM TABLE(SYSPROC.MON_GET_WORKLOAD(‘’,-2)) AS T;

35

Essential Monitoring Targets – AVERAGE LOG DISK WAIT TIME

 Time an agent spends waiting for log records to be flushed to disk

–MON_GET_WORKLOAD Table Function

–LOG_DISK_WAIT_TIME

• The amount of time (in milliseconds) an agent spends waiting for log records to

be flushed to disk

–LOG_DISK_WAITS_TOTAL

• The number of times agents have to wait for log data to write to disk while

copying log records into the log buffer

SELECT varchar(workload_name, 30) as WORKLOAD_NAME

, CASE WHEN log_disk_wait_time > 0

THEN DEC(FlOAT(log_disk_waits_total)/

FLOAT(log_disk_wait_time), 10, 7)

ELSE NULL END as AVG_LOGDISK_WAIT_TIME_MS

, log_disk_wait_time as LOG_DISK_WAIT_TIME

, log_disk_waits_total as LOG_WAITS_TOTAL

FROM TABLE(MON_GET_WORKLOAD('', -2)) AS T;

议程

数据库性能问题原因

 DB2数据库监控手段

–事件监控

–快照监控

–监控函数与视图

 DB2 SQL监控与调优

 DB2 Lock监控与调控机制

 DB2 Log监控与调控机制

 DB2 监控常用工具

Monitoring Enhancements for Version 10.5

New Monitoring elements for new column-organized tables, for example

 Counters for total logical and physical column-organized data page reads and pages
found

– E,g, POOL_COL_L_READS, POOL_COL_P_READS

 Counter for column-organized data page writes:
– POOL_COL_WRITES

 Counters for asynchronous column-organized data page reads and writes and pages
found:

– POOL_ASYNC_COL_READS,POOL_ASYNC_COL_WRITES

 Counters for column-organized data page reads per table

38

Monitoring - Interfaces

 Table Functions and Monitor Views
– Realt-time monitoring accessible through SQL statements
– Newer, lightweight, high-speed monitoring infrastructure
– Evolved as complimentary extension to Workload Manager (WLM)

implementation
– Turn on collection at database level (more granularity available with WLM

feature)

 Event Monitors
– Capture information about database operations over time, as specific types of

events that take place in your system

 Snapshot Monitor
– Switch based monitoring
– Services snapshot command, most Event Monitors,

Administrative Views and Table Functions
– Snapshots are useful for determining the status of a database system

 DB2 problem determination tool a.k.a db2pd

39

Event Monitoring

 To capture point-in-time information related to different kinds of

events that take place in the system

 Created via SQL-DDL, definitions are stored in system catalog tables

Output can be directed to:
– File

– Table

– Pipe

 Types of events include:
– Locking

– UOW

– Statements (SQL)

– Connections

– Tables

 New monitoring framework being used for new event monitors
– Some event monitors have been deprecated

• DEADLOCKS + DETAILED DEADLOCKS LOCKING

• TRANSACTION UNIT OF WORK (UOW)

40

Types Of Events For Which Event Monitors Capture Data
Type of event to monitor Event monitor name Details

Locks and deadlocks LOCKING
To determine when locks or deadlocks occur, and the applications

that are involved.

Execution of an SQL statement ACTIVITIES
To capture activities for diagnostic reasons and to study the

resource consumption of SQL

Execution of an SQL statement STATEMENTS
To track what requests are being made to the database as a result

of the execution of SQL statements

Completion of a unit of work

(transaction)
UNIT OF WORK

To gather resource usage information and performance metrics for
UOWs that run on the system

Eviction of sections from the package

cache

PACKAGE
CACHE

To capture a history of statements that are no longer in the package
cache

Connections to the database by

applications
CONNECTIONS

To capture metrics and other monitor elements for each connection
to the database by an application

Deactivation of database DATABASE
To capture metrics and other monitor elements that reflect
information about the database as whole, since activation

Deactivation of database BUFFERPOOLS To capture metrics related to buffer pools

Deactivation of database TABLESPACES To capture metrics related to table spaces

Deactivation of database TABLES
To capture metrics related to tables that have changed since

database activation

Statistics and metrics on WLM objects STATISTICS
To capture processing metrics related to WLM objects in the

database

Exceeding a WLM threshold
THRESHOLD
VIOLATIONS

To determine when specific thresholds that you set are exceeded
during database operations

Changes to db or database manager

configuration

CHANGE
HISTORY

To capture change to db and db manager configuration and registry
settings, execution of DDL statements and execution of utilities

NEW IN
DB2 10

41

Working With Event Monitors - Procedure

1) Create the Event Monitor
– (Optional) Activate the Event Monitor

2) Enable the collection of data
– Only for:

• LOCKING
• ACTIVITIES
• STATISTICS
• UNIT OF WORK

3) Run your application or queries

4) (Optional) Deactivate the Event Monitor

5) Examine the data collected by the Event Monitor

6) (Optional) Prune data that is no longer needed from the Event Monitor
Tables

42

Working With Event Monitors – (1) Create the Event Monitor

A. Determine type of Event Monitor

B. Decide type of output from the Event Monitor

Regular Tables
 Starting in DB2 Version 10, all event monitors can write output to regular tables
 Examine monitoring data at a later point in time
 Immediate access to data using SQL
Χ CPU, log file, disk storage

Unformatted Event (UE) Tables
 Data written in binary format
 New PRUNE_UE_TABLE option for the procedure EVMON_FORMAT_UE_TO_TABLES,

to prune data from the UE table after the extraction
 Examine monitoring data at a later point in time
 Performance, CPU, log file, disk storage
Χ Require a post-processing operation to extract the data and to perform query using

SQL

Files
 Managed by the Operating System
 Data stored outside of the database being monitored
 Examine the data offline at later point in time
Χ SQL access

Named Pipes
 Output sent to a named pipe so the data can be used by another application

immediately
 Event Data manipulation in real time
Χ Access event data at a later point in time

NEW IN
DB2 10

43

Working With Event Monitors – (1) Create the Event Monitor

Type of event to

monitor

Regular

Table
UE Table File Named Pipe

LOCKING  

ACTIVITIES   

STATEMENTS   

UNIT OF WORK  

PACKAGE CACHE  

CONNECTIONS   

DATABASE   

BUFFERPOOLS   

TABLESPACES   

TABLES   

STATISTICS   

THRESHOLD
VIOLATIONS   

CHANGE HISTORY 

44

Working With Event Monitors – (1) Create the Event Monitor

C. Issue a CREATE EVENT MONITOR statement
CREATE EVENT MONITOR evmon-name FOR eventtype

WRITE TO {TABLE | PIPE | FILE | UNFORMATTED EVENT TABLE}

{AUTOSTART | MANUALSTART}

• CONNECTIONS and STATEMENTS Event Monitors support the use of a
WHERE clause on application id, authorization id and application name, in
the CREATE or ALTER EVENT MONITOR statement

• BUFFERPOOLS, CONNECTIONS, DATABASE, STATEMENTS, TABLES and
TABLESPACES Event Monitors can capture different types of events with a
single event monitor definition

D. (Optional) If required by the type of event monitor created, activate it by
issuing the SET EVENT MONITOR STATE statement

SET EVENT MONITOR evmon-name STATE 1

45

Working With Event Monitors – (1) Create the Event Monitor

 Recommended Practice:

–Table Space dedicated and configured to store the output
table or tables associated with any event monitor

–For Unformatted Event Table: create Table Spaces with at least
an 8K pagesize to ensure that event data is contained within
the inlined BLOB column of the UE table. If the BLOB column is
not inlined, then the performance of writing and reading the
events to the unformatted event table might not be efficient

46

Working With Event Monitors – (2) Enable Data Collection

PASSIVE EVENT MONITORS:

 UNIT OF WORK
– Database configuration parameter:

• MON_UOW_DATA {NONE | BASE}

MON_UOW_PKGLIST {OFF | ON}

MON_UOW_EXECLIST {OFF | ON}

– CREATE/ALTER WORKLOAD … COLLECT UNIT OF WORK DATA…

– N.B.: Enable REQUEST METRICS collection

 LOCKING
– Database configuration parameter:

• MON_LOCKWAIT

• MON_LW_THRESH

• MON_LOCKTIMEOUT

• MON_DEADLOCK

– CREATE/ALTER WORKLOAD …

• COLLECT LOCK WAIT DATA

• COLLECT LOCK TIMEOUT DATA

• COLLECT DEADLOCK DATA

Configure

Data

Collection

47

Working With Event Monitors – (2) Enable Data Collection

PASSIVE EVENT MONITORS:

 ACTIVITIES
– CREATE THRESHOLD… COLLECT ACTIVITY DATA…

– CREATE/ALTER SERVICE CLASS…COLLECT ACTIVITY DATA…

– CREATE/ALTER WORKLOAD… COLLECT ACTIVITY DATA…

 STATISTICS
– Database configuration parameter

• Enable REQUEST METRICS collection

– CREATE/ALTER SERVICE CLASS … COLLECT REQUESTS METRICS…

Configure

Data

Collection

48

Working With Event Monitors – (4) Deactivate Event Monitor

 (Optional) Deactivate the Event Monitor by issuing the SET EVENT

MONITOR STATE statement:

SET EVENT MONITOR evmon-name STATE 0

 Event Monitor Status:

SELECT EVMONNAME

, EVENT_MON_STATE(EVMONNAME) STATUS

FROM SYSCAT.EVENTMONITORS;

49

Working With Event Monitors – (5) Examine the data collected
by EM

 UNFORMATTED EVENT (UE) TABLE:
– db2evmonfmt tool

• Extracts data into a text report or into a formatted XML document

• Limited capabilities to filter data (event ID, application, workload, …)

• Setup and compilation of the Java source code provided

(sqllib/samples/java/jdbc) is required before the tool can be used

• Example:

java db2evmonfmt -f lock.xml -ftext -type lockwait -hours 5

– EVMON_FORMAT_UE_TO_XML table function

• Extracts data into an XML document

• PureXML features to query data

– EVMON_FORMAT_UE_TO_TABLES procedure

• Extracts data into a set of relational tables

• With PRUNE_UE_TABLES option, data that is successfully inserted into

relational tables is deleted from the UE table

NEW IN
DB2 10

50

Working With Event Monitors – (5) Examine the data collected
by EM

 REGULAR TABLE:
– Run a SELECT statement to display the monitor element data

 FILE or PIPELINE
– db2evmon command

• Formats event monitor file and named pipe output, for display using

standard output

• EXAMPLE:

Providing the path of the event files
db2evmon -path '/tmp/dlevents'

Providing the name of the database and the event monitor name
db2evmon -db 'sample' -evm 'dlmon'

51

Event Monitor Data Retention From Release To Release

 You can upgrade Event Monitor Output Tables after you upgrade the

DB2 product
– To retain any data that might exist in Event Monitor Tables created before the

upgrade

 The EVMON_UPGRADE_TABLES procedure upgrades the definitions of

existing Event Monitor (REGULAR and UE) Tables to the current

level of DB2

 Use the EVMON_FORMAT_UE_TO_TABLES procedure with the

UPGRADE_TABLES option to upgrade the set of Relational Tables

produced from an UE table

 Implications of not upgrading event monitor tables
– Any new columns that have been added to the event monitor in the new

release will not be populated with data, and will not available for queries

– The values for any monitor elements that previously existed in the old release

and that increased in size in the new release might be truncated

NEW IN
DB2 10

52

Working With Event Monitors - Altering An Event Monitor

 LOGICAL DATA GROUPS
– Monitor Elements are grouped on logical data group

– EXAMPLE:
• ACTIVITIES logical data groups:

event_activity

event_activity_metrics

event_activitystmt

event_activityvals

 An Event Monitor cannot be changed
– EXCEPTION: one or more logical data groups can be added* using

ALTER EVENT MONITOR … ADD LOGICAL GROUP…

– DEFAULT: all logical data groups that are associated with that Event Monitor

are captured

* Reactivation of the Event Monitor required to start to gather the new metrics

CREATE EVENT MONITOR myacts FOR ACTIVITIES

WRITE TO TABLE ACTIVITY, ACTIVITYMETRICS;

ALTER EVENT MONITOR myacts

ADD LOGICAL GROUP ACTIVITYSTMT

ADD LOGICAL GROUP ACTIVITYVALS;

NEW IN
DB2 10

53

Create New Event Monitor Example :: Statements

 EXAMPLE: Capture all statements where appl_id = myapp

 RECCOMENDATIONS:
–For highly active event monitors use larger buffers

–Place Event Monitor Tables in dedicated Tablespace

 It’s possible use db2evtbl command to generate sample

CREATE EVENT MONITOR SQL statement that write to SQL tables

 SET EVENT MONITOR STATE 1 – to activate an Event Monitor

 SET EVENT MONITOR STATE 0 – to deactivate an Event Monitor

 Use SQL to query results and find costly and error prone SQL statements

 CATALOG VIEWS
–EVENTS

–EVENTMONITORS

–EVENTTABLES

CREATE EVENT MONITOR GET_SQL_MYAPP FOR STATEMENTS

WHERE (APPL_ID = 'myapp')

WRITE TO TABLE IN MYTBP PCTDEACTIVATE 70 BUFFERSIZE 8

AUTOSTART ;

54

Create New Event Monitor Example :: Locking

 DB configuration parameters for collecting locking metrics (defaults)
–Lock timeout events (MON_LOCKTIMEOUT) = NONE

–Deadlock events (MON_DEADLOCK) = WITHOUT_HIST

–Lock wait events (MON_LOCKWAIT) = NONE

–Lock wait event threshold (MON_LW_THRESH) = 5000000

 TODO: Update default configurations:
db2 update db cfg for SAMPLE using

mon_lockwait history

mon_lw_thresh 3000000

mon_locktimeout hist_and_values

mon_deadlock without_hist

–WITHOUT_HIST – collect basic event information

–HISTORY – collect up to 250 activities within same unit of work

–HIST_AND_VALUES – collect activities and values

–3000000 – [μs], lock wait condition exists this long before lockwait

55

Create New Event Monitor Example :: Locking - Continued

 Designed to simplify the task of collecting locking data

 DB2DETAILDEADLOCK Event Monitor is DEPRECATED
– Disable and remove it issuing the following SQL statements:

 Create Event Monitor that writes in an UE Table

SET EVENT MONITOR DB2DETAILDEADLOCK state 0

DROP EVENT MONITOR DB2DETAILDEADLOCK

CREATE EVENT MONITOR LOCKEVMON FOR LOCKING

WRITE TO UNFORMATTED EVENT TABLE

(TABLE IMRAN.LOCKEVENTS

IN APPSPACE PCTDEACTIVATE 85)

议程

数据库性能问题原因

 DB2数据库监控手段

–事件监控

–快照监控

–监控函数与视图

 DB2 SQL监控与调优

 DB2 Lock监控与调控机制

 DB2 Log监控与调控机制

 DB2 监控常用工具

57

Snapshot Monitoring

 Snapshot based monitoring - still viable

 Higher overhead than new monitoring framework

 Controlled with System Monitor switches

– DBM level vs SESSION level

– Can reset counters at session level – easy to get current results

 System Monitor data accessible through:

– Snapshot Monitor APIs (C or C++ application)

– GET SNAPSHOT command (CLP)

• For database manager, database, bufferpools, locks, dynamic SQL,
applications, tables, tablespaces, etc. (the works)

• Formatted text output by default – “great for greppers”

– Snapshot Administrative Views and Snapshot Table Functions

• Easy application interface to use
• Easy to store in database relational tables
• SYSIBMADM.SNAP* Views
• SYSPROC.SNAP_* Table Functions

58

Snapshot Monitoring - System Monitor Switch Control

Globally turned ON/OFF in DBM configuration (online)

 Locally turned ON/OFF for the current SESSION

 Reset counters

– At SESSION level: db2 reset monitor all

– Globally: DEACTIVATE/ACTIVATE DATABASE MYDB

db2 get DBM CFG | grep DFT_MON

db2 update DBM CFG using

DFT_MON_monitorswitch {ON | OFF}

db2 get snapshot for database on MYDB

db2 get MONITOR SWITCHES

db2 update MONITOR SWITCHES using

monitorswitch {ON | OFF}

db2 get snapshot for database on MYDB

59

Snapshot Monitoring - System Monitor Switches

Monitor Switch DBM Parameter Information Provided

BUFFERPOOL DFT_MON_BUFPOOL Number of reads and writes, time taken

LOCK DFT_MON_LOCK Lock wait times, deadlocks

SORT DFT_MON_SORT Number of heaps used, sort performance

STATEMENT DFT_MON_STMT Start/Stop time, statement identification

TABLE DFT_MON_TABLE Measure of activity(rows read/written)

UOW DFT_MON_UOW Start/end times, completion status

TIMESTAMP DFT_MON_TIMESTAMP Timestamps

 Before capturing a snapshot or using an event monitor, you must

determine what data you need the database manager to gather

– Buffer pool activity information

– Lock, lock wait, and time related lock information

– Sorting information

– SQL statement information

– Table activity information

– Times and timestamp information

– Unit of work information

60

Snapshot Monitoring Examples - Database

GET SNAPSHOT
– Collects status information and formats the output for the user

– get snapshot for
• database on SAMPLE

• database manager

• application agentid #

• dynamic sql on SAMPLE

 SNAPDB ADMINISTRATIVE VIEW
– Allows you to retrieve snapshot information from the database (dbase) logical

group for the currently connected database

 SNAP_GET_DB TABLE FUNCTION
– Returns the same information as the SNAPDB administrative view

NEW IN
DB2 10

61

Snapshot Monitoring Examples - Database

 Example: SNAPDB ADMINISTRATIVE VIEW

– Retrieve the status, platform, location, and connect time for all database

members of the currently connected database

DB_NAME DB_STATUS SERVER_PLATFORM DB_LOCATION DB_CONN_TIME DBPARTITIONNUM

------- --------- --------------- ------------ -------------------------- --------------

TEST ACTIVE AIX64 LOCAL 2006-01-08-16.48.30.665477 0

TEST ACTIVE AIX64 LOCAL 2006-01-08-16.48.34.005328 1

TEST ACTIVE AIX64 LOCAL 2006-01-08-16.48.34.007937 2

SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME

, DB_STATUS

, SERVER_PLATFORM

, DB_LOCATION

, DB_CONN_TIME

, DBPARTITIONNUM

FROM SYSIBMADM.SNAPDB

ORDER BY DBPARTITIONNUM;

62

Snapshot Monitoring Examples - Database

 Example: SNAP_GET_DB TABLE FUNCTION

– Retrieve the status, platform, location, and connect time as an aggregate view

across all database members for all active databases in the same instance that

contains the currently connected database

DB_NAME DB_STATUS SERVER_PLATFORM B_LOCATION DB_CONN_TIME

------- --------- --------------- ------------ --------------------------

TOOLSDB ACTIVE AIX64 LOCAL 2005-07-24-22.26.54.396335

SAMPLE ACTIVE AIX64 LOCAL 2005-07-24-22.09.22.013196

SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME

, DB_STATUS

, SERVER_PLATFORM

, DB_LOCATION

, DB_CONN_TIME

FROM TABLE(SNAP_GET_DB(CAST (NULL AS VARCHAR(128)), -2)) AS T

63

Snapshot Monitor - db2top

Most entries in snapshots are cumulative values and show the

condition of the system at a point in time

 DB2TOP can be used to calculate the delta values for those

snapshot entries in real time

 Run db2top in interactive mode

 Run db2top in batch mode

Object Monitored:

– Database (d)

– Tablespaces (t)

– Dynamic SQL (D)

– Sessions (l)

– Bufferpools (b)

– Locks (U)

db2top –d SAMPLE

db2top -d SAMPLE -f collect.file -C -m 480 -i 15

db2top -d SAMPLE -f collect.file -b l -A

议程

数据库性能问题原因

 DB2数据库监控手段

–事件监控

–快照监控

–监控函数与视图

 DB2 SQL监控与调优

 DB2 Lock监控与调控机制

 DB2 Log监控与调控机制

 DB2 监控常用工具

65

In-Memory Metrics :: System Perspective

Connection

∑R

Service Class

∑R

Service Class

∑R

DB2 Agent

Collects Data
Database

Request

Workload

Definition

∑R

Request Metrics

Workload

Occurrence

(UOW) ∑R

Legend

ΣR = Accumulation of request metrics collected by agent

System

66

Access Points :: System Perspective

System Monitoring Table Functions:

MON_GET_UNIT_OF_WORK
– Returns metrics for one or more units of work

MON_GET_WORKLOAD
– Returns metrics for one or more workloads

MON_GET_CONNECTION
– Returns metrics for one or more connections

MON_GET_SERVICE_SUBCLASS
– Returns metrics for one or more service subclasses

Also provide interfaces that produce XML output:
– MON_GET_UNIT_OF_WORK_DETAILS

– MON_GET_WORKLOAD_DETAILS

– MON_GET_CONNECTION_DETAILS

– MON_GET_SERVICE_SUBCLASS_DETAILS

Other

Processe

s

Service

Class A

Service

Class B

Service

Class C

30%

20%50%

DB2

67

Access Points :: System Perspective

EXAMPLE:

 Display connections that return the highest volume of data to

clients, ordered by rows returned

APPLICATION_HANDLE ROWS_RETURNED TCPIP_SEND_VOLUME EVMON_WAIT_TIME TOTAL_PEAS TOTAL_CONNECT_REQUEST_TIME

-------------------- -------------------- -------------------- -------------------- ------------------ -----------------------------

26 436 341504 0 0 101

20 24 0 0 0 7

22 16 1174 0 0 37

18 1 1422 0 0 852

7 1 0 0 0 4699

25 0 67940 0 0 10

24 0 129842 0 0 6

23 0 97262 0 0 8

db2 "SELECT application_handle

, rows_returned

, tcpip_send_volume

, evmon_wait_time

, total_peas

, total_connect_request_time

FROM TABLE(MON_GET_CONNECTION(cast(NULL as bigint),-2)) AS t

ORDER BY rows_returned DESC ";

68

Access Points :: System Memory

System Memory Monitoring Table Functions:

MON_GET_MEMORY_POOL
– Retrieves metrics from the memory pools contained

within a memory set

MON_GET_MEMORY_SET
– Retrieves metrics from the allocated memory sets,

both at the instance level and for all active databases within the instance

Other Miscellaneous Monitoring Table Functions:
– MON_GET_FCM

– MON_GET_FCM_CONNECTION_LIST

– MON_GET_EXTENT_MOVEMENT_STATUS

*Always collected

System

69

In-Memory Metrics :: Activity Perspective

DB2 Agent

Collects Data

WLM Activity

∑A
Package Cache

∑A

Database

Request

Activity

Metrics

Activity Level

Legend

ΣA = Accumulation of metrics from activity execution portion of request

Activity

70

Access Points :: Activity Perspective

 Activities Monitoring Table Functions:

– MON_GET_PKG_CACHE_STMT

• Aggregates of the metrics gathered during each execution of a particular

SQL statement (static or dynamic)

– MON_GET_PKG_CACHE_STMT_DETAILS

– MON_GET_ACTIVITY_DETAILS

• Information on activities currently running on a system

Activity

71

Access Points :: Activity Perspective

MON_GET_PKG_CACHE_STMT
– Returns a point-in-time view of both

static and dynamic SQL statements in the database package cache

– EXAMPLE:

List all the dynamic SQL statements from the database package cache ordered by

the average CPU time:
MEMBER SECTION_TYPE AVG_CPU_TIME LOCK_WAIT_TIME STMT_TEXT

------ ------------ -------------------- -------------------- --

0 D 11 0 SET CURRENT LOCK TIMEOUT 5

0 D 123 0 INSERT INTO WE_F6QEE8J2Y.WE_0G0_18846 (v

0 D 1753 0 SELECT STATS_FLAG FROM SYSTOOLS.HMON_ATM

0 D 1907 0 INSERT INTO WE_F6QEE8J2Y.WE_0G0_17064 (v

0 D 1920 0 DELETE FROM WE_F6QEE8J2Y.WE_0G0_18846 WH

0 D 2142 0 SELECT TABSCHEMA, TABNAME FROM SYSCAT.TA

0 D 2248 0 SELECT POLICY FROM SYSTOOLS.POLICY WHERE

0 D 2450 0 UPDATE WE_F6QEE8J2Y.WE_0G0_18846 SET val

0 D 33623 0 SELECT * FROM WE_F6QEE8J2Y.WE_0G0_3128 O

0 D 34477 0 UPDATE WE_F6QEE8J2Y.WE_0G0_18536 SET val

0 D 34678 0 DELETE FROM WE_F6QEE8J2Y.WE_0G0_4062 WHE

Activity

db2 "SELECT MEMBER
, SECTION_TYPE
, TOTAL_CPU_TIME/NUM_EXEC_WITH_METRICS as AVG_CPU_TIME
, LOCK_WAIT_TIME
, SUBSTR(STMT_TEXT,1,40) STMT_TEXT

FROM TABLE(SYSPROC.MON_GET_PKG_CACHE_STMT('D',NULL,NULL,-2)) as T
WHERE T.NUM_EXEC_WITH_METRICS <> 0
ORDER BY AVG_CPU_TIME"

72

Access Points :: Activity Perspective

MON_GET_ACTIVITY_DETAILS (XML)
– Returns details about an activity, including general activity

information (like statement text) and a set of metrics for the activity

– EXAMPLE:

Captures information about all the activities currently running on a system:
APP...HANDLE A..._ID UOW_ID T...ACT_TIME T...WAIT_TIME STMT_TEXT

------------ ------- ------ ------------ ------------- --

15 1 5 16 5 select name from sysibm.systables

15 1 3 17 5 select * from sysibm.systables

7 1 49 0 0 with A1 as (select * from ……….

3 record(s) selected with 1 warning messages printed.

WITH A1 AS

(SELECT * FROM TABLE(wlm_get_workload_occurrence_activities(null, -1)) WHERE activity_id > 0)

SELECT A1.application_handle

, A1.activity_id

, A1.uow_id

, total_act_time

, total_act_wait_time

, varchar(actmetrics.stmt_text, 50) AS stmt_text

FROM A1

, TABLE(MON_GET_ACTIVITY_DETAILS(A1.application_handle, A1.uow_id,A1.activity_id, -1)) AS ACTDETAILS

, XMLTABLE (XMLNAMESPACES(DEFAULT 'http://www.ibm.com/xmlns/prod/db2/mon')

, '$actmetrics/db2_activity_details'

PASSING XMLPARSE(DOCUMENT ACTDETAILS.DETAILS) AS "actmetrics“

COLUMNS "STMT_TEXT" VARCHAR(1024) PATH 'stmt_text‘

, "TOTAL_ACT_TIME" INTEGER PATH 'activity_metrics/total_act_time‘

, "TOTAL_ACT_WAIT_TIME" INTEGER PATH 'activity_metrics/total_act_wait_time'

) AS ACTMETRICS

Activity

73

In-Memory Metrics :: Data Object Perspective

DB2 Agent

Collects Data

Table

Database

Request

Tablespace

Table

Metrics

Tablespace

Metrics

Bufferpool

Tablespace Tablespace

Container

Container

Metrics

Bufferpool

Metrics

LOB /Data

XML DataIndex

Row Data

Temp

Tablespace

Data

Object

74

Access Points :: Data Object Perspective

 Data Object Monitoring Table Functions:
– MON_GET_BUFFERPOOL

• Monitor bufferpool efficiency, hit ratio, activity

– MON_GET_CONTAINER

• Monitor container activity, rank, enumerate

– MON_GET_INDEX*

• Monitor index usage, e.g. number of index scans, how many scans are

index only scans

– MON_GET_TABLE*

• Monitor activity on table reads, updates, inserts, overflow activity

– MON_GET_TABLESPACE

• Monitor tablespace activity (read and writes), bufferpool activity

*Always collected

Data

Object

Table Space 10 Table Space
9

Table Space 1…
…

Table Space 13 Table Space 12 Table Space 11

75

Access Points :: Data Object Perspective

EXAMPLE:

 List utilization of container file systems, ordered by highest utilization

CONTAINER_NAME FS_ID FS_USED_SIZE FS_TOTAL_SIZE UTILIZATION
-- ------------ ------------------ -------------------- -------------------

/home/db2inst1/db2inst1/NODE0000/DB2PT/T0000000/C0000000.CAT 2050 15056855040 19592417280 76.85

/home/db2inst1/db2inst1/NODE0000/DB2PT/T0000001/C0000000.TMP 2050 15056855040 19592417280 76.85

/home/db2inst1/db2inst1/NODE0000/DB2PT/T0000002/C0000000.LRG 2050 15056855040 19592417280 76.85

/home/db2inst1/db2inst1/NODE0000/DB2PT/T0000003/C0000000.LRG 2050 15056855040 19592417280 76.85

SELECT varchar(container_name, 65) as container_name

, SUBSTR(fs_id,1,10) fs_id

, fs_used_size

, fs_total_size

, CASE WHEN fs_total_size > 0

THEN DEC(100*(FLOAT(fs_used_size)/FLOAT(fs_total_size)),5,2)

ELSE DEC(-1,5,2)

END as utilization

FROM TABLE(MON_GET_CONTAINER('',-1)) AS t

ORDER BY utilization DESC

In-Memory Metrics :: Lock Perspective

 Lock Monitoring Table Functions:

–MON_GET_LOCKS
• List of all locks in the currently connected database

–MON_GET_APPL_LOCKWAIT
• All locks that each application's agents, connected to the current database,

are waiting to acquire

*Always collected

76

77

Monitor Views

 MON_BP_UTILIZATION
– Buffer pool efficiency (e.g. hit ratios, average read and write times)

 MON_CONNECTION_SUMMARY
– Incoming work per connection
– New monitor elements: total_app_commits, total_app_rollbacks

 MON_CURRENT_SQL
– Currently executing SQL statements (both static and dynamic)

 MON_CURRENT_UOW
– Identify long running units of work and related activity

 MON_DB_SUMMARY
– High level, aggregated metrics (percentage breakdowns, wait vs. active, totals)

 MON_LOCKWAITS
– List applications currently waiting to acquire locks, holding applications, elapsed time, and

statements

 MON_PKG_CACHE_SUMMARY
– Aggregate metrics for statements currently in package cache, both dynamic and static

 MON_SERVICE_SUBCLASS_SUMMARY
– Returns key metrics for all service subclasses in the currently connected database

 MON_WORKLOAD_SUMMARY
– High level, aggregated metrics (percentage breakdowns, wait vs. active, totals)

 MON_TBSP_UTILIZATION
– List tablespace information, state, high watermark, and hit ratios

议程

数据库性能问题原因

 DB2数据库监控手段

–事件监控

–监控快照

–监控函数与视图

 DB2 SQL监控与调优

 DB2 Lock监控与调控机制

 DB2 Log监控与调控机制

 DB2 监控常用工具

79

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

80

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

81

Problematic SQL

Query optimization is the main common factor that affects
application performance
 Problematic SQL statements slow down application
 Problematic SQL statements can be detected with:

– Snapshot monitors
– Event monitors
– SQL monitoring interfaces

• Administrative views
• Table functions

 Problematic SQL statements can be analyzed with:
– Visual Explain
– Text Explain Facility

82

Problematic SQL

 Problematic SQL statements can be improved with:
– Design Advisor (database objects)

• Indexes
• Materialized Query Tables
• Multi-dimensional Clustering
• Database Partitioning

– Better coding
– Statement Concentrator
– DB2 Optim Query Workload Tuner
–DB2 10

• Explore new performance enhancing features and take advantage of
them

A number of performance improvements have been included in DB2 10 to

improve the speed of many queries

These improvements are automatic; there are no configuration settings or

changes to the SQL statements required

NEW IN
DB2 10

83

A common scenario

New major application version
 Expectations:

– Increase value
– Reduce response time
– Reduce CPU utilization
– Increase user capacity

 Use db2advis with -wlm evmonname or
–w workloadname option to capture and advise about:

– Index
– MDC
– MQT
– DB Partitioning

 Capture additional high cost SQL for further analysis and tuning
 Further analyze and tune with Visual Explain
 STMT_CONC (DB CFG parameter)

84

Actual Situation

 Benchmark for new application version slower than previous
application version

DB2 is configured well
– Large part of DB2 tuning done in previous application version
– Autoconfigure has been run on new schema

New SQL may need tuning
– Complementary database objects (indexes, MDC, MQT, partitioning)
– Coding (apply best practices)

Use the AUTOCONFIGURE command to get recommendations from the configuration

advisor. Although the wizard interface for the configuration advisor is discontinued in DB2

10, the configuration advisor is still available by using the AUTOCONFIGURE command

NEW IN
DB2 10

85

Original Comparative Application Results Version X vs. Version
Y

0

10

20

30

40

50

60

70

80

90

100

50

users

150

users

250

users

Vx Response
Time

Vx CPU
Utilization

Vy Response
Time

Vy CPU
Utilization

Time /

% Utilization

X = Old Application

Y = New Application

 New version is slower and consumes more resources

86

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

87

Use Event Monitor for Activities & db2advis To Initially Tune
Workload

 Event monitor for activities captures both dynamic and static SQL
WLM feature can focus on specific workloads and service classes
Optionally Snapshot Monitoring or Monitoring Table Functions can

be used in place of Event Monitor for Activities
 Integrates with design advisor (db2advis) for recommendations

about:
– Indexes
– MQTs
– MDCs
– Database partitioning

Use the db2advis command to get recommendations from the design

advisor. The wizard interface for the design advisor is discontinued in DB2 10,

but the design advisor is still available using the db2advis command

NEW IN
DB2 10

88

Steps to take for EVM for Activities & db2advis Analysis

1. Alter workload sysdefaultuserworkload (or your desired workload)

to collect activity data on coordinator with details and values

2. Create event monitor db2activities for activities

3. Set event monitor db2activities state 1

4. Work is run in sysdefaultuserworkload (or your desired workload)

5. Use:

db2advis –d sample –wlm db2activities –m MICP –o advise.out

ALTER WORKLOAD SYSDEFAULTUSERWORKLOAD COLLECT ACTIVITY DATA

ON ALL WITH DETAILS AND VALUES;

CREATE EVENT MONITOR DB2ACTIVITIES

FOR ACTIVITIES WRITE TO TABLE;

SET EVENT MONITOR DB2ACTIVITIES STATE 1;

New event monitors features:

• All event monitors now support the WRITE TO TABLE target

• Existing event monitors that write to tables can be altered to capture

additional logical data groups

NEW IN
DB2 10

89

db2advis and EVM for Activities flow

Event Monitor

Activities

Workload

or

Service Class

Applications

Collect Activity Data

Declaration

CONTROL ACTIVITY ACTIVITY

STMT

ACTIVITY

VALS

db2advis

ADVISE.OUT

DDL:

Indexes,

MQT’s

MDC,

Partitioning

Create Activities

Event Mon. & Activate

db2advis –d sample –wlm

db2activities –m MICP –o

ADVISE.OUT

ADVISE

TABLES

ACTIVITY

METRICS

90

After db2advis Recommendations and Implementation
Comparative Application Results Version X vs. Version Y

0

10

20

30

40

50

60

70

80

90

100

50

users

150

users

250

users

Vx Response

Vx CPU

Vy Response

Vy CPU

 Now it’s better, but the new application should be much faster

 SQL costs… need further analysis, still very high

91

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

92

Detect SQL costs

SQL Interfaces?

Snapshot Monitoring?

Event Monitoring?

93

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

94

Snapshot Monitoring

 To request snapshot information about the dynamic SQL running
on SAMPLE database, issue:

 Returns a point-in-time picture of the contents of the SQL
statement cache for the database

Only for DYNAMIC SQL

 Formatted text output

GET SNAPSHOT FOR DYNAMIC SQL ON sample

Switches must be ON

95

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

Event Monitors

 Event monitors are used to collect information about the database
and any connected applications when specified events occur

 Filter events on APPL_ID, AUTH_ID and APPL_NAME

 Event type to capture SQL statements:
– STATEMENTS

• Statement start/stop time
• CPU used
• Dynamic and Static SQL

High overhead

96

97

Creating an Event Monitor for Statements

 A table event monitor streams event records to SQL tables, this makes capture,
parsing, and management of event monitoring data easy

 Need SYSADM or DBADM to create a table event monitor

 Syntax:

CREATE EVENT MONITOR stmtmon

FOR STATEMENTS

WHERE APPL_NAME = 'NEWAPP' AND

AUTH_ID = 'BBDS'

WRITE TO TABLE IN event_tblspace

CONNHEADER(TABLE STMT_EVT_CH IN TBS_EVMON),

STMT(TABLE STMT_EVT_STMT IN TBS_EVMON TRUNC),

CONTROL(TABLE STMT_EVT_CTRL IN TBS_EVMON)

BUFFERSIZE 2000

NONBLOCKED

OR
WRITE TO FILE '/tmp/dlevents'

OR
WRITE TO PIPE '/home/riihi/dlevents'

= REDUCE IMPACT

98

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

99

SQL Monitoring Interfaces

Administrative Views
– Easy-to-use application programming interface
– Execute administrative functions through SQL

 Table functions MON_GET_...
– Enhanced reporting and monitoring of the database system, data

objects, and the package cache
– Have a lower impact on the system than existing system monitor

and snapshot interfaces

MONITORING

100

Examples of SQL interfaces – Finding SQL Costs

 Snapshot Administrative Views
– LONG_RUNNING_SQL (Time, Statement, Status)
– QUERY_PREP_COST (High Prep Times, % of Exec)
– TOP_DYNAMIC_SQL (Exec Time, Sorts)
– …

 Table Functions
– MON_GET_ACTIVITY_DETAILS (Executing vs. Waiting)

– MON_GET_PKG_CACHE_STMT

DB2 10 returns additional columns such as columns that report information

about data tags in service class thresholds

DB2 10 returns additional columns that report metrics about I/O server

efficiency, processing time for authentication, statistics generation, statement

execution, high water mark input values, and extended latch waits

101

SQL – High CPU Time

 Example: List top 10 SQL statements by cpu_time

SELECT MEMBER,

SECTION_TYPE,

VARCHAR(STMT_TEXT,200) AS STATEMENT,

num_exec_with_metrics as numExec,

TOTAL_CPU_TIME/NUM_EXEC_WITH_METRICS AS AVG_CPU_TIME,

TOTAL_CPU_TIME

FROM TABLE(MON_GET_PKG_CACHE_STMT('D', NULL, NULL, -2)) as T

WHERE T.NUM_EXEC_WITH_METRICS <> 0

ORDER BY AVG_CPU_TIME desc

fetch first 10 rows only;

102

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

103

SQL Explain Tools

Graphical
– Easy to quickly spot the problem
– Provides drill down functionality
– Multiple images can be stored for comparison

 Text Based
– Can be used with any interface
– All the information is contained on

a single screen
– Available on all platforms
– Format output with db2exfmt or db2expln

In DB2 10 the db2exfmt command output now

shows the table space attributes value for each

table space containing a partitioned table

104

Why use Explain?

 To seek performance tuning opportunities
– How are tables being accessed?
– How useful are additional indexes?
– Does rewriting the query help?

 Comparisons: To understand changes in query performance due
to:

– Changes in the data model
– Changes in the data
– Changes in configuration parameters

 View statistics used at time of optimization and current
performance

In general Control Center and related wizards and advisors have

been discontinued in DB2 10. These have been replaced by a new set of

GUI tools: IBM Data Studio and IBM InfoSphere Optim tools

NEW IN
DB2 10

105

How to use Visual Explain

 Invoke from
– IBM Data Studio
– IBM Optim Workload Query Tuner

 Enter SQL to be analyzed
– Trap the poorly-running SQL statement from your program or from

performance monitors, or create a brand new statement
– The text can then just be typed or copied into the input box
– Click the Visual Explain button

Output
– Explain Information stored in Explain Tables

• Detailed information
• Manipulate explain information using SQL

– Access plan graph

 For dynamic and static SQL statements

106

Visual Explain Interface

 Every object in the Visual Explain
interface can be drilled down for
additional information
 Cost

– The estimated total resource usage
necessary to execute the access plan
for a statement. The unit of cost is
the timeron

– Timeron
• A combination of CPU cost (in

number of instructions) and
I/O (in numbers of seeks and
page transfers)

• In general if you have a larger
number of timerons your
query will run slower

 All of the run times of the
individual components are
cumulative and are measured in
timerons

107

Overview: Costly SQL  Explain

DB2

Explain
Costly SQL

Resource Requirements

#CPU Instructions

#IOs required

#Buffer pages

Operations

Join Techniques

Sorting

Predicate Evaluations

Runtime State

Heap Allocations

Database Configurations

Statistics

Access Methods

Table Scans

Index Access

Index Scans

db2 –tvf EXPLAIN.DDL

EXPLAIN

TABLES

108

Capturing and accessing section actuals

 Section actuals are runtime statistics collected during the
execution of the section for an access plan
 The section actuals values can then be compared with the

estimated access plan values generated by the optimizer to
assess the validity of the access plan
 To capture a section with actuals, you need to enable section

actuals:
– Enable section actuals for the entire database using the section_actuals

database configuration parameter

– Enable section actuals for a specific application using the
WLM_SET_CONN_ENV procedure

db2 update database configuration using section_actuals base

CALL WLM_SET_CONN_ENV(…)

109

Capturing and accessing section actuals

 Section actuals can be accessed using the
EXPLAIN_FROM_ACTIVITY procedure

 You can format the explain data using
the db2exfmt command and specifying,
as input, the explain instance key that
was returned as output from the
EXPLAIN_FROM_ACTIVITY
procedure

CALL EXPLAIN_FROM_ACTIVITY (…)

There is graphical interface where you can

collect and analyze actuals. This interface

is called Optim Query Workload Tuner

(OQWT)

110

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

111

Statement Concentrator

 Specifies whether dynamic statements that
contain literal values use the statement cache

Database configuration parameter
– stmt_conc OFF | LITERALS

 CLI/ODBC configuration keyword
– StmtConcentrator = OFF | WITHLITERALS

 Environment or connection attribute
– SQL_ATTR_STMT_CONCENTRATOR

• SQL_STMT_CONCENTRATOR_OFF
• SQL_STMT_CONCENTRATOR_WITH_LITERALS

 The default setting for the configuration keyword or
environment attribute is the one that’s specified for
statement concentration on the server

STATEMENT

CONCENTRATOR

112

Statement Concentrator Example

SELECT FIRSTNME, LASTNAME FROM EMPLOYEE

WHERE EMPNO='000020'

and

SELECT FIRSTNME, LASTNAME FROM EMPLOYEE

WHERE EMPNO='000070'

SELECT FIRSTNME, LASTNAME FROM EMPLOYEE

WHERE EMPNO=:L0

 DB2 will provide the value for :L0 (either '000020' or '000070')
based on the literal used in the original statements

Share the

same entry

in the

package

cache

Package

cache will use

the statement

113

0

10

20

30

40

50

60

70

80

90

100

50

users

150

users

250

users

Vx Response

Vx CPU

Vy Response

Vy CPU

After Statement Concentrator

Comparative Application Results Version X vs. Version Y

 Now it’s much faster

 SQL costs look much better!

114

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

115

Indexes – Benefits and uses

 Apply predicates to provide rapid look-up of the location of data in
a database

 Reduce the number of rows navigated

 Try to avoid sorts for ORDER BY and GROUP BY clauses

 Create an index on:
– Join columns
– Selective filter columns
– Columns frequently used for ordering

 To provide index-only access, which avoids the cost of accessing
data pages

 As the only automatic way to enforce uniqueness in a relational
database

CREATE UNIQUE INDEX EMP_IX ON EMPLOYEE(EMPNO)INCLUDE(FIRSTNAME, JOB)

116

Indexes – Overhead

 They add extra CPU and I/O cost to UPDATE, INSERT, DELETE and
LOAD operations

 They add to “query prepare time” because they provide more
choices for the optimizer

 They can use a significant amount of disk storage

117

Indexes – Best Practices

 Index every PK and most FKs
in a database
 Indexes on FKs also improve

the performance of RI checking
 Explicitly provide an index for the PK
 Columns frequently referenced

in WHERE clauses are good
candidates
for an index
 An exception to this rule is when the

predicate provides minimal filtering
– An example is an inequality such

as WHERE cost <> 4. Indexes are
seldom useful for inequalities because
of the limited filtering provided

 Specify indexes on columns used for
equality and range queries

WITH Indexes

Index Management Redefined in DB2 10

 Jump scan
– Need fewer indexes

 Smart index prefetching
– Faster index access & fewer index reorgs

 Smart data prefetching
– Faster data scans & fewer data reorgs

 Predicate evaluation avoidance
– Faster index scans

Higher performance
– Faster index performance

 Lower costs
– Fewer indexes to maintain
– Dramatic reduction in index reorgs

Everything
here is

NEW in DB2
10!

118

Smart Index Prefetching = Fewer Index Reorgs

Index is 100%

Organized

Index is 80%

Organized

Index is 50%

Organized
0

5

10

15

20

25

30

35

DB2 9.7

DB2 10
28%
faster

with

DB2 10!

119

DB2 V10.5 Index improvements

 Expression based indexes improve query performance

 You can create an index that includes expressions.

 Best suited when you want an efficient evaluation of queries that involve a
column expression.

 Values are transformed by the expressions that you specify.

 For indexes created with the UNIQUE option, the uniqueness is enforced
against the values that are stored in the index. The uniqueness is not
enforced against the original column values.

 Clause EXCLUDE NULL KEYS from Index

 Resolves issues around sparsity of key values

 Reduces size of index object

121

Materialized Query Tables (MQTs)

 Powerful way to improve response time for complex queries

Queries that might require one or more of the following operations:

–Aggregate data over one or more dimensions

–Join and aggregate data over a group of tables

–Data from a commonly accessed subset of data

–Repartitioned data from a table

Without MQTs, similar queries that do the same expensive

operations may repeatedly compute the same results however:

–Consume extra disk space

–Must be updated to maintain their consistency

–Requires its own indexes for efficient access

 The benefit of an MQT relative to its cost is therefore maximized if the MQT benefits

many queries, particularly costly queries, or frequently executed queries

Materialized Query Tables (MQTs)

 An example of creating an MQT is shown below. The table definition is written just as
it is when you use DDL for creating a normal table, but you do not define the
columns and data types. You write an SQL query that describes the structure of the
MQT, and then the MQT is filled with the data that the query returns:

 Based on the MQT DDL above, the DB2 Optimizer decides whether to use the base
table or the MQT. When a query is run against the database, the DB2 Optimizer
rewrites the query if the query matches the MQT definition and using the MQT would
reduce the query costs. When the access plan has a better result with the MQT, then
the query is run against the MQT to access the data

122

CREATE TABLE MY_MQT AS (

SELECT SUM(T1.Sales) as Total_Sales,

SUM(T1.COGS) as Total_Costs,

SUM(T1.Expenses) as Total_Expenses,

T2.Prd_Family as Product_Family,

T3.Years Year, T3.Quarter as Quarter

FROM SALES_FACT T1, PRODUCT T2, TIME T3

WHERE T1.Product_ID = T2.Product_ID AND

T1.Time_ID = T3.Time_ID

GROUP BY T2.Prd_Family, T3.Year, T3.Quarter)

DATA INITIALLY DEFERRED REFRESH DEFERRED

ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM

Multidimensional Clustering (MDC)

123

 Enables a table to be physically clustered on several dimensions

simultaneously

 Primarily intended for data warehousing and large database environments

 DB2 places records that have the same column values in physical

locations that are close together

–Block indexes are smaller than RID indexes
• Faster lookup

–Scan only required blocks

–Index ANDing and ORing can be performed at block level

Multidimensional Clustering differences

Without MDC:

–Traditional indexes refer to records

–Traditional tables are managed by page

–Traditional tables can have only one clustering index!
• Access via the clustering index reduces the number

of pages that need to be read

With MDC:

–MDC indexes refer to blocks

–MDC tables are managed by block

–Each row in a block has the same values for the

MDC dimensions

–MDC tables can be clustered on more than one key

–MDC tables can have MDC indexes and ordinary

(RID-based) indexes

124

125

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

Writing Efficient SELECT statements

 Specify only columns that you need

Use predicates that limit to those rows that you need

Avoid numeric data type conversions

Avoid data type mismatches

 Preferred data types
– CHAR instead of VARCHAR for short columns
– INTEGER instead of FLOAT, DECIMAL or DECFLOAT
– DECFLOAT instead of DECIMAL
– DATETIME instead of CHAR
– NUMERIC instead of CHAR

Avoid DISTINCT or ORDER BY if not required

Use IN list if same column used in multiple predicates

126

Writing Efficient SELECT statements

 Use OPTIMIZE FOR n ROWS clause

Use FETCH FIRST n ROWS ONLY clause

 Use OPTIMIZE FOR n ROWS clause with the FETCH FIRST n ROWS
ONLY clause

 Use FOR READ ONLY or FOR FETCH ONLY clause

 Use FOR UPDATE OF clause

 Use FOR READ ONLY clause along with USE AND KEEP UPDATE
LOCKS clause

127

DB2 10 Up to 3x Faster Query Performance

Multi-core parallelism enhancements

 Performance improvements in for:
– Queries over star schemas
– Queries with joins and sorts
– Queries with aggregation
– Hash joins

Higher performance
– Up to 35% faster out-of-the-box performance
– Up to 3x faster than DB2 9.7

 Lower costs
– No need of more/new hw
– Postpone hardware upgrades

DB2
10

128

129

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

 Create the explain tables:

– The EXPLAIN.DDL file is located in the $INSTHOME/sqllib/misc directory

– Go to this directory and issue the db2 -tvf EXPLAIN.DDL command

 Run the EXPLAIN.DDL DB2 command file:

 Command Line Usage

 Parameters:

– d database name

– m M-MQT I-Indexes C-MDC P-Partitioning

Workload type keyword: (choose one)

– s single SQL statement

– i SQL from input file

– w SQL from ADVISE_WORLOAD table by workload name

– g Get workload from dynamic SQL snapshot

– wlm SQL from the ACTIVITY Event Monitor tables

Other keywords:

– t specifies the maximum time, in minutes, to complete the operation

Using Design Advisor

130

db2advis –d sample –m MICP –i da.sql

db2 CONNECT TO database-name

db2 -tvf EXPLAIN.DDL

Using Design Advisor

131

 Command Line Examples

–Example: All object types using an input file of SQL statements

–Example: For a single SQL statement

–Example: Use the workload table to determine MQT

recommendations

–Example: Workload from then Activity Event Monitor tables

db2advis –d sample –m MICP –i da.sql

db2advis –d TPCD –s “Select * from part where partkey = 1”

db2advis –d TPCD –w wk1 –m M –c sim_space –b mqt_space –q newschema

db2advis –d TPCD –wlm db2activities –m MICP –o advise.out

132

Agenda

Problematic SQL & Situation

Response time solution

SQL costs solution
– Snapshot Monitoring
– Event Monitoring
– SQL Monitoring Interfaces
– Analyzing SQL

• Explain Tools
• Visual Explain

– Statement Concentrator

Making Performance Improvements
– Database Objects
– Better Coding
– Design Advisor
– Other Considerations

Other factors influencing query performance

 Accurate database statistics – RUNSTATS

Defining [Informational] constraints

Use the REOPT bind option when host variable’s values affect
access plan

 Using parameter markers to reduce statement compilation

 Specifying Row Blocking for better cursor processing
– Blocking All
– Blocking No
– Blocking Unambig

Data sampling for statistics
– Row-level Bernoulli sampling
– System page-level sampling

133

A number of improvements have been made to the RUNSTATS command to

make statistics gathering faster in some cases. The command parameters have

also been simplified

NEW IN
DB2 10

If all tuning options fail

 Use Optimization profiles
– Explicit Optimization guideline to DB2 optimizer
– XML document
– Define SQL statement
– Define optimization guideline
– No application or database configuration changes

 Things to consider about Optimization profiles
– Requires effort to maintain
– For existing SQL statements only
– Optimizer still considers other possible access plans
– Optimizer ignores invalid or inapplicable guidelines

134

Optimization profile supports registry variables and inexact matching

NEW IN
DB2 10

Summary

 Many performance improvements have been included in DB2 10 to
improve the speed of many queries. These improvements are automatic;
there are no configuration settings or changes to the SQL statements
required!

 Use event monitors and Design Advisor for better response time results

 Use snapshot monitoring, event monitoring or SQL monitoring interfaces
to identify SQL costs

 Visual Explain tools are a good way to review the query access plans

 Statement Concentrator as alternative to reduce SQL costs

 You can make performance improvements after database design and
coding phase

 Optim Query Workload Tuner is a good tool when you need to make
performance improvements

135

NEW IN
DB2 10

议程

数据库性能问题原因

 DB2数据库监控手段

–事件监控

–监控快照

–监控函数与视图

 DB2 SQL监控与调优

 DB2 Lock监控与调控机制

 DB2 Log监控与调控机制

 DB2 监控常用工具

137

Agenda

 Locking and Performance

 Identifying Locking Scenarios

Using Isolation Levels

Monitoring Locking Issues

Avoiding Locking Scenarios

138

Agenda

 Locking and Performance

 Identifying Locking Scenarios

Using Isolation Levels

Monitoring Locking Issues

Avoiding Locking Scenarios

Locking and Performance

 To the users, a locking issue can appear to be a performance issue!

While users wait, the perception is the database cannot retrieve
data fast enough…

… when in fact, the issue may be queries are encountering:

–Lock Waits
–Lock Timeouts
–Lock Escalations
–Deadlocks

139

You may have a locking problem, if…

 You are experiencing:
– Application failures
– Frequent retries of application processing
– General “slow down” in performance of SQL processing

 Your objectives:
– Reduce or eliminate all lock timeouts and deadlocks

• Both result in application failures
• Extra processing time
• Wasted system resources

– Eliminate all lock escalations

140

Monitoring Locking

Use snapshots, event monitors, administrative views and db2pd
– Key monitoring elements can be retrieved multiple ways

 Review Administrative Notification logs

Need to know:
– Type of lock event causing performance slowdown
– Identify the SQL statement(s) involved
– Lock requested and encountered by applications

Data collection can be difficult
– Locking information is extremely transient

• Most lock information is gone once the lock is released
– Baseline data is needed for comparison and evaluation

141

Recommended to monitor for lock waits, lock timeouts and deadlock events at all times

142

Agenda

 Locking and Performance

 Identifying Locking Scenarios

Using Isolation Levels

Monitoring Locking Issues

Avoiding Locking Scenarios

143

Lock Scenarios

 Lock waits
– Typical, expected event

• Excessive time spent waiting for a lock is not typical
• Lock waits slow down performance and completion
• Excessive lock waits can become lock timeouts

 Lock escalations
– Small number acceptable – only if no adverse effects
– Contributes to other locking issues (e.g. lock timeouts)
– Objective should be to eliminate all lock escalations

 Lock timeout
– Lock timeouts result in the application not completing the transaction

and performing a rollback

 Deadlocks
– Resolution deadlock detector arbitrarily selects one deadlocked process

as the victim process to roll back

144

Lock Wait Scenario

 Application requests a lock whose mode conflicts with lock held by another

 Requesting application is suspended in a “lock wait” mode until:
– Transaction causing conflict releases lock (i.e., COMMIT, ROLLBACK or FORCE

APPLICATION)
– Lock timeout (or deadlock) occurs

145

Deadlock Scenario – Example – Cursor Stability

Transaction A Transaction B

update T1 set col1 = ? where col2 = 2

update T2 set col1 = ? where col2 = ?

select * from T2 where col2 >= ?

select * from T1 where col5 = ? and col2 = ?

Waiting because is

reading uncommitted data

Waiting because is

reading uncommitted data

DEADLOCK!!

146

Deadlock

All deadlocks are considered abnormal

 Indicators include processing delays and poor performance

Deadlock slows down the participant transaction while it waits
for deadlock detection and resolution

– Wastes system resources by rolling back victim transaction
– Causes extra system work
– Transaction log access

Deadlocks or retry logic in the application cause transactions to
be re-executed

– The victim application has to re-execute the transaction from the
beginning after ROLLBACK

147

DB2 Deadlock Detector

 Responsible for resolving deadlocks
– When a deadlock is detected, the deadlock detector will choose a victim

that will be automatically rolled back
• Rolling back the victim causes the lock conflict to be removed, and

the other application can continue processing
• If it finds a deadlock, the deadlock detector arbitrarily selects one

deadlocked process as the victim process to roll back
• The victim process is awakened, and returns SQLCODE -911

(SQLSTATE 40001), with reason code 2, to the calling application

DB CFG parameter DLCHKTIME
– Defines frequency with which the database manager checks for

deadlocks
• A high value increases the deadlock check time and reduces

overhead of checking but could result in applications being stuck in
deadlock for longer periods of time

• A low value allows for deadlocks to be detected sooner; however it
also introduces additional overhead for checking more frequently

Lock Timeout Scenario

Process A

Process B

Lockwait

Xlock

DB2 waits for a specified period of time, then returns a SQL error code of
SQL0911N with a reason code of “68” to the waiting process

01

01

Lock

Request

148

149

LOCKTIMEOUT and SET CURRENT LOCK TIMEOUT

Example 1: Set the lock timeout value to wait for 30 seconds before

returning an error

SET CURRENT LOCK TIMEOUT 30

Example 2: Unset the lock timeout value, so that the locktimeout

database configuration parameter value will be used instead

SET CURRENT LOCK TIMEOUT NULL

 You can set lock wait behavior on a session level rather than using the
global value specified by the DB CFG parameter LOCKTIMEOUT

 Examples

.-CURRENT-. .-=-.

>>-SET--+---------+--LOCK TIME OUT--+---+--------------------->

>--+-WAIT-------------------------+--------------------------><

+-NOT WAIT --------------------+

+-NULL-------------------------+

| .-WAIT-. |

+-+------+--integer-constant---+

' -host-variable-----------------'

150

Lock Escalations

 Lock escalation can occur in two different scenarios:
– A single application requests a lock that will exceed its allowable number of locks
– An application triggers lock escalation because the maximum number of

database locks for the entire database is exhausted

 The database manager will attempt to obtain table locks and release
the existing row locks

– The desired effect is to make more lock memory available for other applications

 The following database parameters have a direct effect on lock
escalation:

– LOCKLIST - total number of 4k pages allocated for lock storage
– MAXLOCKS - allowable percentage of locklist that can be used by a single

application

 Tuning and monitoring may be necessary
– Less of an issue if STMM is managing memory for locks

Workload and query behavior dictate locking patterns

Monitoring/Identifying Locking Issues in General

 Key indicator monitoring elements:
– lock_timeouts or lock_wait_time values are increasing
– int_rollbacks value is increasing
– int_deadlock_rollbacks shows increase in number of rollbacks due to deadlock

events
– Check monitoring element lock_escals for indications that lock escalations may be

a contributing factor

 To help identify locking issues, use:
– Administrative table functions and views

• DBM CFG for DFT_MON_LOCKS must be ON for snapshot table functions to
report accurately

• MON_GET_LOCKS and MON_GET_APPL_LOCKWAIT table functions
– Application and database lock snapshots
– Lock and deadlock event monitors
– db2pd

 Check Administration Notification Log for:
– Lock escalations
– Lock waits

151

152

Reducing Locking Occurrences in General

 Commit the following actions as soon as possible:
– Write actions such as DELETE, INSERT, and UPDATE
– Data definition language (DDL) statements (e.g. ALTER, CREATE, and

DROP statements)
– BIND and REBIND commands

Avoid fetching result sets that are larger than necessary
– The more rows that are touched, the more locks that are held, the

greater the opportunity to run into a locking problem
– Push down row selection criteria into a WHERE clause of the SELECT

statement
• As opposed to returning rows and filtering them at the application

Avoid using a higher isolation level than necessary

Use WITH RELEASE clause with CLOSE CURSOR statement

Resolving Deadlock Issues

 Deadlock frequency can be reduced by ensuring that all applications
access common data in the same order

– When two applications take incompatible locks on the same objects in
different order, they run a much larger risk of deadlocking

 Avoid concurrent DDL operations if possible
– For example, DROP TABLE statements can result in a number of catalog

updates as rows might have to be deleted for the table indexes, primary
keys, check constraints in addition to the table

– If other DDL operations are dropping or creating objects, there can be
lock conflicts and even occasional deadlocks

153

Eliminating Lock Escalations

 Combination of good application design and database configuration
can minimize or eliminate lock escalations

– If possible, acquire an explicit table lock with LOCK TABLE statement
• Minimizes the DB2 workload and reduces the associated system

resources needed

 If not using STMM, manually adjust MAXLOCKS or LOCKLIST
– Their values may be too small for your current workload

• If multiple applications are experiencing lock escalation, this could be
an indication that the LOCKLIST needs to be increased

• If only one application is experiencing lock escalations, then
adjusting MAXLOCKS could resolve this issue

154

155

Agenda

 Locking and Performance

 Identifying Locking Scenarios

Using Isolation Levels

Monitoring Locking Issues

Avoiding Locking Scenarios

Isolation Levels

 DB2 provides different levels of protection to isolate data

 Isolation level can be specified at many levels
– Connection
– Session (application)
– Statement

 For Embedded SQL, the level is set at bind time

 For Dynamic SQL, the level is set at run time

Isolation Level Dirty Read Non-repeatable

Read

Phantom

Read

Repeatable Read (RR) - - -

Read Stability (RS) - - Possible

Cursor Stability (CS) - Possible Possible

Uncommitted read (UR) Possible Possible Possible

DEFAULT DEFAULT

156

Concurrency Control

 Currently Committed is a variation on DB2’s Cursor Stability
isolation

– If uncommitted row-change found, use currently committed version of
data

– Avoids timeouts and deadlocks
– Log based:

• No management overheadSituation Result

Reader blocks Reader No

Reader blocks Writer No

Writer blocks Reader Yes

Writer blocks Writer Yes

Cursor Stability Currently Committed

Situation Result

Reader blocks Reader No

Reader blocks Writer No

Writer blocks Reader No

Writer blocks Writer Yes

157

Currently Committed – How does it work?

Transaction A Transaction B

update T1 set col1 = ? where col2 = 2

update T2 set col1 = ? where col2 = ?

select * from T2 where col2 >= ?

select * from T1 where col5 = ? and col2 = ?

commit commit

No locking

Reads last committed version

of the data

No locking

Reads last committed version

of the data

No deadlocks, no timeouts in this scenario!

158

Considerations for CUR_COMMIT

 For new databases, the default is set to ON
– When the default is set to ON your query will return the currently

committed value of the data at the time when your query is submitted

 During database upgrade from V9.5 or earlier, the cur_commit
configuration parameter is set to DISABLED to maintain the same behavior
as in previous releases

 If you want to use currently committed on cursor stability scans, you need
to set the cur_commit configuration parameter to ON after the upgrade

159

160

Agenda

 Locking and Performance

 Identifying Locking Scenarios

Using Isolation Levels

Monitoring Locking Issues

Avoiding Locking Scenarios

Monitoring Locking Issues in General

Monitoring:
– Create/configure/enable locking event monitors to capture details on

lock event data for a workload or database
• Find the application that is waiting, and information on the lock

requested
– Use db2pd –locks (wait)
– Review DB2 administration notification log (<instance>.nfy) with

DIAGLEVEL set to 3 or 4 (waits), or DB2 diagnostic log (db2diag.log)

New event monitor features:

•All event monitors now support the WRITE TO

TABLE target

•Existing event monitors that write to tables can

be altered to capture additional logical data

groups

NEW IN
DB2 10

161

Administrative View – SYSIBMADM.SNAPDB

 SYSIBMADM.SNAPDB contains relevant information about locks

LOCKS_HELD LOCK_WAITS LOCK_WAIT_TIME DEADLOCKS LOCK_ESCALS LOCKS_WAITING LOCK_TIMEOUTS INT_DEADLOCK_ROLLBACKS

---------- ---------- -------------- --------- ----------- ------------- ------------- ---------------------

11 16 817243 3 0 1 8 3

1 record(s) selected.

Total

Deadlocks

Total Locks

waits

Current

Locks

waiting

Total Lock

Timeouts
Total Lock

Escalations

SELECT LOCKS_HELD, LOCK_WAITS, LOCK_WAIT_TIME,DEADLOCKS, LOCK_ESCALS,

LOCKS_WAITING,LOCK_TIMEOUTS, INT_DEADLOCK_ROLLBACKS

FROM SYSIBMADM.SNAPDB;

162

Administrative View – SYSIBMADM.MON_LOCKWAITS

 SYSIBMADM.MON_LOCKWAITS contains information on locks
SELECT SUBSTR(TABSCHEMA,1,8) AS TABSCHEMA

, SUBSTR(TABNAME,1,15) AS TABNAME

, LOCK_OBJECT_TYPE

, LOCK_MODE

, LOCK_MODE_REQUESTED

, AGENT_ID_HOLDING_LK

FROM SYSIBMADM.MON_LOCKWAITS;

TABSCHEMA TABNAME LOCK_OBJECT_TYPE LOCK_MODE LOCK_MODE_REQUESTED AGENT_ID_HOLDING_LK

--------- --------------- ------------------ ---------- ------------------- -----------------

DB2INST1 DEPARTMENT TABLE_LOCK X S 40

1 record(s) selected.

Lock Mode
Lock Mode

Requested

163

SYSIBMADM.LOCKWAITS administrative view is deprecated in DB2 10.

Use new view like SYSIBMADM.MON_LOCKWAITS

Table Functions – MON_GET_LOCKS and MON_GET_APPL_LOCKWAIT

SELECT lock_name, hld_member, lock_status, hld_application_handle

FROM TABLE (MON_GET_APPL_LOCKWAIT(NULL, -2))

 Used to investigate locking problems in the current connected database

1. Call the MON_GET_APPL_LOCKWAIT table function to determine all the locks that are

waiting to be acquired in the database

 This query returns the following output:

 A HLD_MEMBER value of -2 indicates that the lock

0x00030005000000000280000452 is being held at a remote member

Lock status

is waiting

164

MON_GET_LOCKS and MON_GET_APPL_LOCKWAIT (Cont.)

2. Call the MON_GET_LOCKS table function to determine the holder of the lock, by specifying

the lock name, 0x00030005000000000280000452, as the search argument:

 This query returns the following output:

SELECT lock_name, member, lock_status, application_handle

FROM TABLE (MON_GET_LOCKS

(CLOB('<lock_name>00030005000000000280000452</lock_name>'), -2))

Lock status

is Granted
The App “12562” is waiting to

obtain a lock that the App

“65545” has
165

Monitoring db2diag.log for Lock Waits

 DBM CFG parameter DIAGLEVEL set to 4 records lock timeouts

2009-09-04-10.16.41.126755-240 E5543901G631 LEVEL: Info

PID : 6974 TID : 2950687648 PROC : db2sysc 0

INSTANCE: db2inst1 NODE : 000 DB : SAMPLE

…

…

…
Request for lock "TAB: (2, 6)" in mode ".IX" timed out

Application caused the lock wait is

"*LOCAL.db2inst1.090904141554"

Statement:

DATA #2 : String with size, 41 bytes

update employee set edlevel = edlevel + 1

Attempt to acquire

a table lock

Lock requested

Intent exclusive

(IX)

Statement causing

the error

166

167

Monitoring database locks using db2pd

Lock Level
Lock Mode

(exclusive)

Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 07:00:28

Locks:

Address TranHdl Type Mode Sts Owner Dur HoldCount Att ReleaseFlg

0xA5AB63F0 8 Row ..S W 9 1 0 0x10 0x00000002

0xA5AB61E0 9 Row ..X G 9 1 0 0x00 0x40000000

Lock Status

“Waiting”

db2pd –db sample –locks wait

Monitoring - Lock Escalation

With DBM CFG parameter DIAGLEVEL set to 3 (default) or 4, Lock
escalations are reported in the db2diag.log:

 Additional tools
– IBM Data Studio & IBM InfoSphere Optim Performance Manager
– Snapshot Monitor (Database and Application level) and Event Monitor (Database

and Connection type) => "Lock escalations" and "Exclusive lock
escalations“ (x_lock_escals) info

– Many others DB2 interfaces provide info on "Lock escalations" (lock_escals)

2009-07-13-16.27.49.115000-240 E1444H457 LEVEL: Warning

PID : 2800 TID : 3444 PROC : db2syscs.exe

INSTANCE: DB2 NODE : 000 DB : SAMPLE

APPHDL : 0-146 APPID: *LOCAL.DB2.050713222002

FUNCTION: DB2 UDB, data management, sqldEscalateLocks, probe:3

MESSAGE : ADM5502W The escalation of "240671" locks on table

"DB2ADMIN.EMPLOYEE"

to lock intent "X" was successful.

In general Control Center and related components as Health Center have been

discontinued in DB2 10. These have been replaced by a new set of GUI tools: IBM

Data Studio and IBM InfoSphere Optim tools

168

169

Agenda

 Locking and Performance

 Identifying Locking Scenarios

Using Isolation Levels

Monitoring Locking Issues

Avoiding Locking Scenarios

Avoiding Locking Scenarios

 Best Practices – Application
– Use least restrictive isolation level that maintains the data integrity

requirements of the application
– Reduce Isolation level of specific statements by using statement level

isolation (i.e., WITH clause)
– CLOSE cursors WITH RELEASE to free locks prior to end of transaction
– Perform updates as close to the end of the transaction as possible, to

reduce exclusive lock duration
– COMMIT frequently to release locks
– Avoid multiple applications accessing the same tables, but acquiring

locks in different orders (access patterns should be similar)
– Avoid having multiple processes that access the same table for both

reads and writes within the same transaction

HIGH
VALUE

170

Avoiding Locking Scenarios

 Best Practices – Database
– Avoid lock escalations by increasing DB CFG parameters LOCKLIST

and/or MAXLOCKS, or using STMM
– Avoid lock timeouts:

• Adjust the DB CFG parameter LOCKTIMEOUT or use the SET
CURRENT LOCK TIMEOUT command

– Use CURRENTLY COMMITTED
– If not using CURRENTLY COMMITTED, avoid deadlocks by:

• Reducing row blocking during index and table scans (CS and RS
only):

DB2_SKIPINSERTED to skip/ignore uncommitted inserted rows
DB2_SKIPDELETED to skip/ignore uncommitted deleted rows
DB2_EVALUNCOMMITTED to defer locking until row is known to

satisfy
query. Uncommitted data will be evaluated. Skips deleted rows on

table
scans

HIGH
VALUE

171

172

More Useful Registry Variables for Locking

DB2_KEEPTABLELOCK
– If set to ON or TRANSACTION, this variable allows the DB2 database

system to maintain the table lock when an Uncommitted Read or Cursor
Stability isolation level is closed. The table lock that is kept is released at
the end of the transaction. If set to CONNECTION, a table lock is released
for an application until the application either rolls back the transaction
or the connection is reset

DB2_MAX_NON_TABLE_LOCKS
– Defines the maximum number of NON table locks a transaction can

have before it releases these locks. Because transactions often access
the same table more than once, retaining locks and changing their state
to NON can improve performance

DB2LOCK_TO_RB
– Specifies whether lock timeouts cause the entire transaction to be rolled

back, or only the current statement

Random ordering for Index columns: New in 10.5

 Lessens index page contention

When rows are added to a table in Index sequence contention on
the leave page might occur

 For example keys generated using identity column or sequences or
timestamps

Most beneficial in pureScale environments

Summary

 Locking and concurrency issues can have a significant impact on the
performance of a DB2 application

 It is necessary to collect information that would help to identify
what type of lock event is involved

 Commit DML (insert, update, delete) and DDL actions as soon as
possible

 Avoid concurrent DDL operations if possible

 Avoid using higher isolation levels than necessary

 Use DB2 options for monitoring locking

174

议程

数据库性能问题原因

 DB2数据库监控手段

–事件监控

–监控快照

–监控函数与视图

 DB2 SQL监控与调优

 DB2 Lock监控与调控机制

 DB2 Log监控与调控机制

 DB2 监控常用工具

176

DB2 Performance Clinic Modules - Agenda

 Logging Concepts

Configuration and Performance

 Logging Bottlenecks

Reducing Logging

Monitoring and Tuning

177

Agenda

 Logging Concepts

Configuration and Performance

 Logging Bottlenecks

Reducing Logging

Monitoring and Tuning

178

Transaction Logging Overview

UPDATE OR

DELETE
INSERT

IN BUFFERPOOL

MODIFY IN

BUFFERPOOL

WRITE TO LOG

BUFFER

LOAD PAGE INTO

BUFFERPOOL

LOG BUFFER

TRANSACTION LOGS

WRITE TO

TRANSACTION

LOG

IO PAGE CLEANERS

or

BUFFER FULL

or

COMMIT/ROLLBACK

CREATE IN

BUFFERPOOL

Pages eligible to be

written to

permanent storage

INS
UPD DEL

All transaction log records must be written to

the transaction logs, before data pages are

eligible to be written to permanent storage.

(This does NOT mean they are written out, just

makes them eligible)

BUFFERPOOL

PERMANENT STORAGE

Flush Log Buffer Triggers

TRANSACTION

LOGGING

Ø INS = NEW ROW

Ø DEL = OLD ROW

Ø UPD = SOME TO ALL OF ORIGNAL

VALUES PLUS NEW VALUES

Ø ALL = COMMIT/ROLLBACK, TRXID

179

Transaction Logging Overview

The process of recording changes to database objects and data

Current Row

Buffer Pool
Insert

Delete
Next Row

read/write

Update

Data

Logs

Log

Buffer

write

Transaction

Commit

180

DB2 Logging Concepts

 Records database transactions

–If there is a crash, the Logs are used to undo or redo
transactions during recovery

 Logging is always “ON” for regular tables in DB2

–Possible to mark some tables or columns as NOT LOGGED
–Possible to log or not the USER temporary tables

 Transaction or Unit of Work (UOW)

–A sequence of one or more SQL statements
–Initiated by the first executable SQL statement after connecting

to the database
–UOW terminates with a COMMIT or ROLLBACK

 DB2 implements two types of logging

–Circular logging (default)
–Archive logging

DB2 Logging and Recovery Methods

 Database Crash Recovery (DB2 Logs)
– Recovery from unscheduled outages
– Uses database logs to Undo or Redo changes

 Version Recovery (DB2 Backup Image)
– Recovery of a database to a previous state using a DB2 backup

 Roll forward Recovery (DB2 Backup Image + DB2 Logs)
– Recovery of database or table space changes using a DB2 backup image

and then applying the DB2 logs using roll forward

181

Circular Logging

 Primary log files (LOGPRIMARY) are used to record all changes and reused when

changes are committed

– Crash and version recovery possible; roll-forward recovery not

possible

– Only full, offline database backups are allowed

 Secondary log files (LOGSECOND) allocated when limit of primary log files reached

– If both primary and secondary log limit is reached, an error

code is returned

 If the file system (LOGPATH) has insufficient space, a “log disk full error” will be

raised

active logs

1

2

3 4

primary

logs

1 n

secondary logs

Transactions

182

Archive Logging

 Maintain a history of log files
– Enable with LOGARCHMETH1 DB configuration parameter

• LOGRETAIN and USEREXIT have been discontinued in DB2 10. They have been
replaced with LOGARCHMETH1

– Allows roll-forward recovery or online backup

 Logs can be archived externally when no longer active to avoid exhaustion of log
directory

 As of DB2 10, archived log files can be compressed

ONLINE ARCHIVE

Contains information for

committed transactions.

Stored in ACTIVE log

subdirectory

ACTIVE – Contains

information

for non-committed

transactions.

When all pre-allocated log files

are filled, more log files are

allocated and used.
Active Log Directory Archive Log Directory

183

NEW IN
DB2 10

 Issue with limited number of logs
– A long running transaction can exhaust logs allocation, even after

secondary log files are allocated
– The number of primary and secondary log files must comply:

• If logsecond has a value of -1, logprimary <= 256
• If logsecond does not have a value of -1, (logprimary + logsecond) <= 256

 Solution: Infinite Logging

 No limit on the size or the number of in-flight transactions
running

 Enabled by setting logsecond to -1

 Database must be configured to use archive logging
– Can hinder performance for rollback and crash recovery

 Other control parameters
• num_log_span: number of log files an active transaction can span
• max_log: percentage of the primary log space that a transaction can consume

Infinite Logging

184

Log control files

 Used to determine which records from the log files need to be applied
to the DB when it restarts after a failure

 Redundancy for database resilience for protection
– Two copies of the each member's log control file, SQLOGCTL.LFH.1 and

SQLOGCTL.LFH.2
– Two copies of the global log control file, SQLOGCTL.GLFH.1 and

SQLOGCTL.GLFH.2

 Performance considerations
– Applying the transaction information contained in the log control files contributes

to the overhead of restarting a database after a failure
• Use the softmax parameter to configure the frequency at which the

database manager writes the buffer pool pages to disk

185

186

Agenda

 Logging Concepts

Configuration and Performance

 Logging Bottlenecks

Reducing Logging

Monitoring and Tuning

187

Logging Configuration and Performance

LOGARCHMETH1 and LOGARCHMETH2
LOGARCHOPT1 and LOGARCHOPT2

LOGPATH and NEWLOGPATH
MIRRORLOGPATH

OVERFLOWLOGPATH
BLK_LOG_DSK_FUL

MAX_LOG
MINCOMMIT

NUM_LOG_SPAN
FAILARCHPATH

NUMARCHRETRY
ARCHRETRYDELAY

LOGPRIMARY
LOGSECOND
LOGBUFSZ
LOGFILSIZ

LOGARCHCOMPR1 and
LOGARCHCOMPR2

LOGPATH

NEWLOGPATH

LOGPRIMARY

LOGSECONDARY

LOGBUFSZ

LOGFILSIZ

MINCOMMIT

NEW IN
DB2 10

188

Primary and Secondary Logs

 Primary logs are PREALLOCATED

 Secondary logs are ALLOCATED as needed to handle spikes in workload

 For day to day operations, ensure that you stay within your primary log

allocation

189

Primary Logs (LOGPRIMARY)

 Characteristics

–This parameter specifies the number of primary logs of size

logfilsiz that will be created

–The primary log files establish a fixed amount of storage

allocated to the transaction log files

–A primary log requires the same amount of disk space whether it

is full or empty

–The maximum number of primary logs is 256, the default is 3

 Impact

–One can encounter a “log-full” condition if configured with an

insufficient number

Secondary Logs (LOGSECOND)

 Characteristics

–If the primary log files become full, secondary log files are

allocated, as needed up to the maximum specified by

LOGSECOND

–Once allocated, they are not deleted until the database is

deactivated

–The maximum number of primary and secondary log files

allowed (logprimary + logsecond), gives an upper limit of 1024

GB of active log space

–Setting of -1 for LOGSECOND enables “infinite logging”

 Impact

–Infinite logging could impact performance if a log file has to be

brought back from an archive for ROLLBACK

190

Log File Size (LOGFILSIZ)

 Characteristics
–DB CFG parameter defines the size of each primary and

secondary log file in 4K pages

 Impact
–The size of the log file has a direct bearing on performance

–“Too small”

• Overhead of archiving more old log files

• Allocating new log files more frequently
–“Too big”

• Logistics of managing large files during archival process

• Risking the loss of a greater quantity of transactions if a

log cannot be recovered

191

When Are Log Records Written to Disk?

Logs

Log

Buffer

write

Transaction

Commit

Transaction log records are written from log buffer to log files

 Transaction committed
– application commits

– group of transactions commit, as defined by the

mincommit configuration parameter

Log Buffer full
– once the internal log buffer becomes full log records

are externalized to the log files on disk

LSN Gap Trigger
– When the amount of log space between the log record

that updated the oldest page in the buffer pool and the

current log position exceeds that allowed by the softmax

database configuration parameter, the database is said

to be experiencing an LSN gap

SOFTMAX reached
– Softmax is a DB CFG parameter which forces a write

to disk when exceeded

This guarantees recoverability during crash recovery

192
MINCOMMIT This parameter is deprecated in Version 10

Log Buffer Size (LOGBUFSZ)

 DB CFG parameter specifying the amount of memory allocated as a

buffer for more efficient log file I/O

–Not managed by Self-Tuning Memory Manager (STMM)

 Default value usually not large enough for OLTP databases (8 4K pages),

256 (4K pages) is a good starting point:

193

db2 update db cfg for sample using LOGBUFSZ

256

Log File States

 Active logs
– Contain at least 1 transaction that has not been committed or rolled back

 Online archive logs
– Contain committed and externalized transactions in the active log directory

 Offline archive logs
– Contain committed and externalized transactions in a separate repository

Package Cache

Update

transaction

Buffer Pool

Page Index

Information to be

updated is retrieved

from disk (if needed)

Log Buffer

Update

transaction

Old

transactions

Disk for the

database

Disk for logs

DB2 Memory

Offline archive logs

Active and online archive logs
194

DB2CKLOG - DB2 CHECK LOG

 Check the validity of archive log files
– Determine whether the log files can be used during roll-forward

recovery
– A single archive log file or a range of archive log files can be

checked

$ db2cklog 3 to 5

Successful
Validation

Validating a range of logs:

DB2CKLOG log_num ARCHLOGPATH path

DB2CKLOG log_num to log_num2

195

New Log Path (NEWLOGPATH)

 DB CFG parameter which is used to specify a new location for the log

files

–Set only when relocating the log files; otherwise the parameter

has no value

 Ideally, the log files will be on a physical disk not shared with the database

or other applications

–Recommended to use RAID-10 for logs to reduce the chance of

losing log files due to disk failures

 I/O characteristics of logs are very different from DB2 containers

–Heavy serial write activity

196

db2 update db cfg for sample using NEWLOGPATH /db2logs

197

General Recommendations

 Location of Database logs

–Need to be on their own physical disk

–A fast I/O device for the log is recommended

–RAID 10 recommended

 LOGFILSIZ

–Increase beyond default, e.g. 5000 4K pages or more

 LOGPRIMARY

–Allocate all logs as primary logs

–Use LOGSECOND for “emergency” space only

 LOGBUFSZ

–Increase to 256 or greater

 Use DB2 and operating system tools to monitor logging activity

198

Agenda

 Logging Concepts

Configuration and Performance

 Logging Bottlenecks

Reducing Logging

Monitoring and Tuning

199

Log Bottleneck

 Anything sharing the disks?

High transaction rate?

High data volume?

 Too frequent commits?

 Logging too much data?

200

Logging Bottlenecks – Disk

Will interfere with all DML activity and cause COMMITs and ROLLBACKs

to take longer

 Can be very performance sensitive, especially in an OLTP environment –

a good place to use your best hardware

–Dedicated disks – separate from tablespaces, etc.

–Fast disks

–RAID parallelization with small (e.g. 8k) stripe size

–Fast controller with write caching

 Is anything using the same disks?

–Can be difficult to determine conclusively

• Partitioned disks, logical volumes make it difficult to be sure

what’s on the same disk spindles

–Check tablespace container paths, database directory, other

utilities, etc.

201

Logging Bottlenecks – High Data Volume

What is High Data Volume?

–iostat (or perfmon) shows larger average I/O

 Possible Remedy

–Can you reduce amount of logged data?
• Alter table design (i.e., group frequently updated columns, ideally at

end of the row)

• Use ALTER TABLE … NOT LOGGED INITIALLY for “bulk”

operations

• Use LOAD utility to insert large amounts of data.

• Use TRUNCATE command instead of DELETE to empty a table

• Use Data Compression of data and indexes.

• Compressed when using compression which can helps reduce I/O

traffic

• If DGTT/CGTTs are being used set NOT LOGGED

• Larger I/Os can also be due to a poor performing logging disk

202

Logging Bottlenecks – High Transaction Rate

What is a High Transaction Rate?

–iostat (or perfmon) shows log device performing greater than 80-

100 I/O requests per second and average size ~4 KB

 Possible Solution

–Can you reduce commit frequency?

• Database snapshot to verify if commits are high

• Application snapshot to find out who is committing so

frequently

–Increase log buffer size

• May be under-sized

• # times log buffer filled, etc.

203

Agenda

 Logging Concepts

Configuration and Performance

 Logging Bottlenecks

Monitoring and Tuning

Reducing Logging

204

Identifying The Log Files Location

1. Determine the file systems that reside on the system

df –k

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda2 10847448 9537288 759132 93% /

/dev 517576 96 517480 1% /dev

/dev/sdb1 38456308 1837808 34665000 6% /db2fs

2. Examine the database configuration parameters ‘Path to log files’

db2 get db config for sample | grep -i 'path to log files'
Path to log files = /db2fs/db2inst1/NODE0000/SQL00006/SQLOGDIR/

3. Verify that the transaction logs are not sharing filesystems or logical devices.

In this example the transaction logs are sharing the same location as table space containers

SELECT SUBSTR(TBSP_NAME,1,20) AS TBSP_NAME, INT(TBSP_ID) AS TBSP_ID,
SUBSTR(CONTAINER_NAME,1,45) AS CONTAINER_NAME

FROM SYSIBMADM.CONTAINER_UTILIZATION

TBSP_NAME TBSP_ID CONTAINER_NAME
------------ -------- ---
SYSCATSPACE 0 /db2fs/db2inst1/NODE0000/SAMPLE/T0000000/C000
TEMPSPACE1 1 /db2fs/db2inst1/NODE0000/SAMPLE/T0000001/C000
USERSPACE1 2 /db2fs/db2inst1/NODE0000/SAMPLE/T0000002/C000

205

SNAPSHOT – Commits and Rollbacks

How many

Commits

GET SNAPSHOT FOR database ON sample

Locate Log section with Commits/Rollback

Reference Commit, Rollback, Dynamic, Static, etc.

Trend log information

Commit statements attempted = 11

Rollback statements attempted = 0

Dynamic statements attempted = 524

Static statements attempted = 16

Failed statement operations = 0

Select SQL statements executed = 171

Xquery statements executed = 0

Update/Insert/Delete statements executed = 9

DDL statements executed = 0

Inactive stmt history memory usage (bytes) = 0

How many

Dynamic

statements

db2 get snapshot for database on sample

206

SNAPSHOT – Log Pages

How many log reads

Write

latency

How many

log writes

Log space available to the database (Bytes)= 8286039447

Log space used by the database (Bytes) = 37160553

Maximum secondary log space used (Bytes) = 0

Maximum total log space used (Bytes) = 7720996823

Secondary logs allocated currently = 0

Log pages read = 13000

Log read time (sec.ns) = 0.000000004

Log pages written = 12646941

Log write time (sec.ns) = 875.000000004

Number write log IOs = 1167739

Number read log IOs = 5

Number partial page log IOs = 105768

Number log buffer full = 221

Log data found in buffer = 200

Read

latency

 Locate log section

 GET SNAPSHOT FOR DATABASE ON ….

 Reference log reads and writes

 Trend log information:

– If there are a large ‘Number Read Log IOs’ relative to ‘Log Data found in buffer’, you

need to tune up the LOGBUFSZ

– If ‘Number of log buffer full’ is high, increase LOGBUFSZ

– ‘Log write time/’Number write log IOs’ is important. <= 2ms is desirable

db2 get snapshot for database on sample

207

Administrative View – LOG_UTILIZATION

SELECT substr(db_name, 1,10) DB_NAME,

log_utilization_percent, total_log_used_kb,

total_log_available_kb

FROM SYSIBMADM.LOG_UTILIZATION;

DB_NAME LOG_UTILIZATION_PERCENT TOTAL_LOG_USED_KB TOTAL_LOG_AVAILABLE_KB

------- ----------------------- ----------------- ----------------------

SAMPLE 21.65 0 19902

1 record(s) selected.

This administrative view contains information about log utilization

Percent utilization of

total log space!

Administrative View – SNAPDB

208

SELECT VARCHAR(DB_NAME,20) AS DBNAME,

CASE WHEN (commit_sql_stmts + rollback_sql_stmts) > 0

THEN DEC((1000 * (log_write_time_s / (commit_sql_stmts +
rollback_sql_stmts))),5,0)

ELSE NULL

END AS LogWriteTime_PER_1000TRX,

log_write_time_s AS LOGWTIME,

commit_sql_stmts + rollback_sql_stmts AS TOTALTRANSACTIONS

FROM sysibmadm.snapdb;

DBNAME LOGWRITETIME_PER_1000TRX LOGWTIME TOTALTRANSACTIONS

------ --------------------------------- ----------------- -------

SAMPLE 10 20 2000

1 record(s) selected.

This administrative view contains amount of time an agent waits for log buffer to be flushed

Cumulative average

time the agent waited

per 1000 transactions

209

Agenda

 Logging Concepts

Configuration and Performance

 Logging Bottlenecks

Monitoring and Tuning

Reducing Logging

Reducing the Overhead of Transaction Logging

 NOT LOGGED option for LOB and CLOB data
– Large object (CLOB) columns are logged by default, if the data they contain is

recoverable from outside of the database mark these columns as NOT LOGGED, to

reduce the volume of data being logged during insert, update, or delete operations

 ALTER TABLE… NOT LOGGED INITIALLY
– If the excessive log volume is correlated with bulk SQL operations, the target table can

be set to NOT LOGGED INITIALLY

 NOT LOGGED option for temporary tables
– Declared Global Temporary Tables (DGTTs)

– Created Global Temporary Tables (CGTTs)

 Use LOAD utility for inserting large amounts of data
– Load does not go through the SQL engine, therefore it is high speed and logging can be

avoided

210

Reducing the Overhead (continued…)

 Reduce the number of COMMITs
– Modify the applications such that commits are performed less often

Grouping frequently updated columns
– Placing columns that are frequently modified next to one another in the table definition

– This can reduce the volume of data that is logged during updates

– They are ideally defined at the end of the row’s definition

 Use TRUNCATE to empty a table
– Truncating a table will avoid the logging activity of DELETE

 Use Data Compression to compress data and indexes
– Log records are also compressed when using compression which reduces I/O traffic

211

Database logging

 Rules of thumb

–Use archive logging in production environments to be able to
perform many recovery operations including, online backup,
incremental backup, online restore, point-in-time rollforward, and
issuing the RECOVER DATABASE command

–Configure secondary log files to provide additional log space on
a temporary basis

–Compress archive logs
–Consider the I/O adapter or bus bandwidth requirements for

transaction logging

212

议程

数据库性能问题原因

 DB2数据库监控手段

–事件监控

–监控快照

–监控函数与视图

 DB2 SQL监控与调优

 DB2 Lock监控与调控机制

 DB2 Log监控与调控机制

 DB2 监控常用工具

214

DB2 Monitoring Tools – DB2TOP

 DB2TOP
– Provides a unified, single-system view of a multi-partition database or single-

partition database on the AIX®, Linux, HP-UX, and Solaris operating systems
– Can be run in interactive mode or in batch mode

215

DB2 Monitoring Tools – DB2TOP

 View delta or cumulative snapshot counters

 Monitor interactively or collect data for analysis on:

– Database (d)

– Tablespace (t)

– Dynamic SQL (D)

– Sessions (l)

– Bufferpool (b)

– Lock (U)

– Table (T)

– Bottlenecks (B)

216

DB2 Monitoring Tools – IBM Optim Performance Manager

 This tool has a web-based interface to view system health at any time from any
location

 It will help you prevent problems by monitoring performance indicators for
emergent problems with easy to understand dashboards

 It enables DBA to plan for business growth and also access historical data to
generate key reports

 It has out of the box DB2 and application monitoring for:
– SAP™

– Cognos™

– DataStage®
– Java® (WebSphere®)
– CLI applications

 With this tool, identify, diagnose and solve problems quickly, pinpointing them in
minutes instead of days

Architecture Overview (OPM 5.1)

DB2

Performance

Repository

Repository Server

Optim Performance Manager

Web Console

Legacy Performance Expert Client

Monitored Servers
Monitored Clients

Extended Insight Client

Console Server

HTTP

TCP/IP

 SQL collection

 Snapshots

 Event monitors

 SQL text

 SQL metrics

 Tx metrics

 Client

information

 Tx metrics

SQL metrics

TCP/IP and DRDA

217

Monitoring And Optimizing Performance – OPM

InfoSphere Optim Performance Manager

InfoSphere Optim Configuration Manager

Get early warning of potential

problems

Diagnose database problems

with resource specific dashboard

InfoSphere Optim Query Workload

Tuner

InfoSphere Optim pureQuery

Runtime

Resolve query problems

Data Studio

Resolve database problemsPrevent problems

DB2 Workload Manager

1. Identify
2. Diagnose

3. Solve4. Prevent

218

Database Overview Dashboard At A Glance

OPM Overview dashboard

 Key-performance-indicators (KPIs) will tell you
what‘s going on

 Alerts for critical areas will tell you immediately
if something is critical and needs further
attention

 Real time or any time views with automated
aggregation and retention management

 Historical information lets you go back in time
and see how a problem arose, mitigate
problems first and do causal analysis later,
compare to prior time periods

KPI violations

identified

Thumbnail

overview, click

to enlarge

Visualize threshold

values in context

Select time period

219

Guided Problem Solving Approach

Drilldown to diagnose alerts to find the problem
• Drill down into

problem detail and

related content

• Analyze captured

data

Diagnose

 Drill down into resource-specific data
– Memory, buffer pool & I/O, SQL, logging, locking, utilities,

system, workload
– List, filter, sort, and report within category
– View by partition or member

 View real time to any time metrics
– What happened while away, mitigate symptoms first, compare to

historical values, capture intermittent problems
– Automatic aggregation and retention management

 Browser-based any where, any time access

220

Analyze The Lock Conflict

 View
– Lock holder
– Lock waiters
– Locked object
– Application details
– SQL statement

 Take action
– Force application

221

Filter and action

controls

Display details of

your top

connections
Launch a

connection report

Analyze Connections

 List connections

 Real time and history

 Partition and member views

 Drill down into details of selected

 Generate in context report

 Force connection

222

Analyze I/O

 Check buffer pools, table spaces, and tables

– Identify hot objects that need dedicated buffer pools
– Check whether buffer pools are appropritely sized
– Check the disk space and container definition of table spaces
– See what SQL is accessing a table

Buffer Pool Table Space Table

Double clicking or using the ‘Show Contained Objects’ button

lets you drill down into contained objects. ‘Show SQL’ for

contextual launch of SQL dashboard

SQL

223

From A Table To The SQL Using The Table

224

Top executions or

summary views

Filter and

action controls

Details for selected

statement

In-context

switching

View changes in

Configuration Manager

Analyze SQL

Click to tune with

Query Tuner

225

 Top executions or summary

 In-context switching

 Top by criteria and filtering

 Real time or historical

 Partition or member views

 SQL statement details

 In-context WLM reports

 What changed with Configuration
Manager

 Tune with Query Tuner

Reporting

 General
– Performance Overview
– Configuration
– Connection

 SQL analysis
– Top SQL
– Top Package
– SQL comparison

 Resource analysis
– Disk space consumption
– Table
– Workload Manager

226

Be Proactive. Focus On Prevention

 Tune proactively
– Identify heavy hitter SQL
– Get expert advice
– Compare results

 Add value to developers
– Identify hot spots for

developers
– Give them tuning advice

 Plan for growth
– Assess workload and storage

growth trends

 Allocate resources by
business priority

– Ensure critical work has
resource preference

– Improve server utilization
– Protect data server

from overload

Prevent problems by leveraging historical information
 Monitor and analyze

historical trends

for planning

 Auto manage

workloads

Prevent

227

